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Chapter 1
Introduction

1.1 Motivation and Approach

This thesis argues that the classification performance of unsupervised and subject-
independent automated sorters for biomedical data can be improved by exploiting
data-driven and domain-knowledge-driven strategies that help find better features
and more efficient sorters.

In the first scenario, accelerometry data were used to assess body movements,
specifically to make a binary classification for freezing of gait (FoG) or normal
events over a number of FoG is one of the most common symptoms of Parkinson’s
disease (PD) and strongly relates to falls. Objective FoG detection has been a press-
ing concern, particularly out-of-lab deployment with wearable devices. Current auto-
matedmethods have been proposed with various global parameters (i.e., inconsistent
threshold fixed values and/or different data channel settings found in literature). This
suggests a high variability in actual thresholds over time and subjects.

The second scenario, which is also a two-class discrimination problem, involves
removing respiratory artefacts in the forced oscillation technique (FOT). The aver-
ages of measurements in lung function tests (e.g., total respiratory mechanical resis-
tance) are the main outcomes in clinical and research usage, which are significantly
affected by the artefacts. Consequently, more work is required to improve the repro-
ducibility of FOT by automatically eliminating respiratory artefacts. Apart from the
natural dependency of breath samples on time and subjects, we found that the nor-
mality of given data should not be assumed as it has been rejected by common test
statistics Hence, besides choosing better features, more general statistical parame-
ters with quartiles should be applied rather than existing methods with the normality
assumption.

Thirdly, multi-class sorting for intramuscular electromyography (nEMG) spikes
(action potentials) can help identify classes that are often referred to motor units
(MUs). Single motor unit activity study is a major research interest because changes
of single motor unit activities (e.g., MU action potential (MUAP) morphology, MU
activation, and MU recruitment) provide the most informative part in diagnosis and
treatment of neuromuscular disorders. Nevertheless, nEMG data often provide more
than one MU activities, thus MUAP discrimination is a crucial task to study single

© Springer Nature Switzerland AG 2019
T. T. Pham, Applying Machine Learning for Automated Classification
of Biomedical Data in Subject-Independent Settings, Springer Theses,
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2 1 Introduction

unit activities. One important note is that the number of classes in this classification
task could not be pre-defined.Hence clusteringmethods are often employed. Existing
features have been calculated from Euclidean distances which assumes a spherical
distribution of data. To account for electrode drift and normalized values that suit
subject-independent settings, we proposed to use the correlation metric that range
−1 → 1.

These three cases share certain difficulties. One is that the de facto standard
practice of each relies on human-based assessment which is almost always subjective
and time-consuming. Another is that it is challenging to assess the relevance and
clusterability of existing features. Higher correlated and more separable features
across classes may improve the classification performance of subject-independent
classifiers.Wehave reviewed the state of the art in each above case and found thatmost
existing automated efforts have failed to address the aforementioned factors. Those
approaches often have been designed primarily in subject-dependent settings to yield
excellent accuracy performance.Meanwhile we aim to launch unsupervisedmethods
for subject-independent settings. We use unsupervised classifiers in the process of
findingmore salient and discriminative features.Once these appliedmachine learning
methods are used, unsupervised manners would alternate the laborious subjective
manual methods.

1.2 Contributions

This thesis aims to improve accuracy performance of classification tasks in subject-
independent settings by utilsing supervised techniques to find better features (i.e.,
more discriminative and higher correlated with the desired output). A voting-based
technique has been proposed to analyze ranking scores by several saliency criteria
includingmutual information, Euclidean distance based discrimination, and variance
ratio based clusterability. This hybrid selection scheme is a data-driven approach
and can compare a comprehensive set of candidates including existing features and
novel variants. Given a large set of exploratory feature candidates, the most selec-
tive features learnt from this process are most applicable to the unsupervised and
subject-independent applications. Exploiting this strategy in each scenario, better
models are also suggested through this domain-knowledge-driven approach (e.g.,
issues associated with dependency in Case 2 and/or other related domain knowledge
in Cases 1 and 3). This approach is applicable to a wide range of machine learning
applications as well.

The main contributions of this work are:

1. This is the first reported feature selection technique based on voting which con-
siders not onlymutual information criterion but also clusterability for respiratory
artefact removal in FOT measurements [2–4], FoG detection [5, 7], and nEMG
spike sorting [1].
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2. Novel features have been found through this work are more relevant and dis-
criminative in the FoG, FOT, and nEMG data than the existing ones [1, 3, 5].

3. Propose anomaly detectors which, to the best of our knowledge, achieve the best
reported performance for unsupervised subject-independent settings for FOT
data regardless of participants’ age [4] and FoG data [6].

4. Suggest an efficient unsupervised spike sorting when the class number is not
pre-defined for subject-independent settings [1].

1.3 Thesis Structure

The thesis is organized in seven chapters. Chap. 2 provides a background and lit-
erature review for the three applications: FoG detection with proper acceleration
data, respiratory artefact removal in FOT data, andMUAP sorting for nEMG data. In
Chap. 3, algorithms including feature engineering and sorting schemes are described.
Details of data collection, parameter setting, and experiment results are demonstrated
separately for each specific domain such as FoG detection (Chap. 4, Point anoma-
lies), FOT respiratory artefact removal (Chap. 5, collective anomalies), and spike
sorting for nEMG data (Chap. 6). The final chapter concludes with a summary and
future work for this thesis.
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Chapter 2
Background

2.1 Unsupervised Classification

A classification task involves finding a mapping from features to a categorical
variable. When no label in the training phase is used, the task is referred to as unsu-
pervised classification. There are two common problems for this: anomaly detection
(i.e., two-class) and clustering or x-class sorting with an unknown number of classes.

Let input data D = x1, . . . , xN where N is number of data points. D is separated
into k disjoint subsets C1, . . . ,Ck (k � N ): Ci ∩ C j = ∅ if i �= j and D = C1 ∪
. . . ∪ Ck . The result of clustering depends on a measure of similarity between the
elements and the aim is to place similar elements in the same cluster.

2.1.1 Multi-class Classification

The basic idea of multi-class sorting is to group similar instances, based on some
distance metric. Several ways to establish the similarity between data points are
commonly used including: Euclidean distances among the group members, dense
areas of the data space, or high correlation coefficients. For biomedical data, an
example is grouping needle EMG motor unit action potentials (MUAP) in order to
find the number of active motor units, i.e., discover the number of clusters, k, in spike
sorting [40].

In the spike sorting literature, algorithms using distances (e.g., k-means clustering
[30, 50], mean shift [11, 56]), likelihood (e.g., Bayesian classification (BC) [10])
and others: template matching [8], neural network based [37], super paramagnetic
clustering (SPC) [4], or density grid contour clustering [54] have all been proposed.

The k-means algorithm is a classic model for clustering, originally developed
for vector quantization [30]. The k-means algorithm requires k to be given a priori
from a set of M points x1, . . ., xM in order to find a label variable y1, . . ., yM
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where yi ∈ 1, . . . , k. First, it randomly initializes centroids μ1, μ2, . . . , μk . It then
calculates the least-squares cost of this initial arrangement using k mean vectors
c1, . . . , ck . Then it assigns a cluster label yi to each point xi and recomputes the
centroids until the following optimization criterion is met.

y1, . . . , ym = argmin
c1,...,ck

k∑

j=1

∑

yi= j

‖xi − c j‖2 (2.1)

Another popular multi-class algorithm is super paramagnetic clustering (SPC) [4],
a state-of-the-art method, has been used to launch a spike-sorting module for neural
data (e.g., [4, 39]). The SPC method uses interactions between a data point (a spike)
and its k-nearest neighbours [4]. If the interactions are strong, spikes aremore similar.
Refinement is implemented as a Monte Carlo iteration of a Potts model [44] which
suggests the behaviour of ferromagnets and certain other phenomena of solid-state
physics.

The term temperature in SPC is used to interpret the probability at which the states
of a number of neighbouring data points change simultaneously [46]. At a relatively
high temperature, all the points switch randomly, regardless of their interactions
(paramagnetic phase). At a low temperature, all the points change their states together
(ferromagnetic phase). At medium temperatures (super paramagnetic phase) only
points in the same group change their states concurrently. In a clustering application,
the ferromagnetic phase, the paramagnetic phase, and the super paramagnetic phase
can be considered a classifying result of one single cluster, several tiny clusters, and
a number of medium-size clusters, respectively.

First, SPC represents m features of a spike i by a point xi in an m-dimensional
space. Then it finds the interaction strengths between the point xi and k nearest
neighbouring points. The interaction strength Ji j between xi and one of its neigh-
bours, named x j , is given by [46]. From Eq. (2.2), Ji j reduces exponentially when

the Euclidean distance
∥∥xi − x j

∥∥2
increases. A smaller distance results in a stronger

similarity between two spikes.

Ji j =
{

1
k exp(−‖xi−x j‖2

2a2 ) if xi is one of k nearest neighbors of x j

0 otherwise.
(2.2)

where a is the average distance from xi to its k nearest neighbours.
Then, SPC assigns each point xi to a random state s in a set of q states. N

Monte Carlo iterations are run for different temperatures using the Swendnsen-Wang
algorithm [5] or the Wolff algorithm [55]. Blatt et al. [5] recommended a setting of
q = 20 states, k = 11 nearest neighbours, and N = 500 iterations for clustering.
With this setting, the clustering process would mainly depend on the temperature
parameter and is robust to small changes of other parameters.

Though there have been enormous number of cluster analysis algorithm proposals
across research areas, the most suitable algorithm for a particular problem is often
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chosen by experimentation [17]. In an early review by Lewicki [28] and Gibson
et al. [18], the current benchmark method is k-means clustering [50] because it is
simple and fast but requires an assumption of the given k. The valley-seeking [58]
and super paramagnetic clustering (SPC) [4] are cutting edgemethods but have high
computational complexity [18]. For example, SPC uses default settings of 100Monte
Carlo iterations, increasing computation time by several order of magnitude. SPC
also involves an estimation of the upper bound of k in the settings [39]. Most of these
techniques use the Euclidean distance metric, that assumes a spherical distribution of
data. Due to the effect of electrode drift, ellipsoidal clusters are formed in practice,
not spherical [18]. In this work, an alternative approach is proposed.

2.1.2 Two-Class Sorting: Anomaly Detection

Anomaly detection is a special case of sorting when k = 2. D = C1 ∪ C2 where
C1 is the anomaly set that are considerably dissimilar from the remainder, C2. In
other words, one class is for all normal data point, the other is for all anomalies. An
anomaly is a deviation from the normal or expected behaviour.

In the literature, C1 is referred to as outliers, exceptions, peculiarities, noise, or
novelties [21, 27, 51]. If the data points aremerely unwanted and not of interest to the
study, this task can be considered noise removal (e.g., robust regression and outlier
detection [21, 27]). For monitoring behaviours, it is often called novelty detection
(e.g., unusual user behaviour and unrecognised activities [51]), or the converse,
anomaly detection. In this thesis two real life examples in biomedical data are studied:
freezing of gait events (Case 1) and respiratory artefact cycles (Case 2).

Key challenges found in this process include defining a representative normal set
(i.e., C2) that is hard and domain specific, and the boundary between C1 and C2 is
not being always precise. Furthermore, in the normal set, element behaviour may be
evolving. Thus, according to problem characteristics (i.e., nature of data, anomaly
type, labels, and output) there are diverse ways to detect anomalies. Recently, sev-
eral approaches including supervised-classification-based (e.g., rule-based, neural
networks, or support vector machine based), clustering based, statistical (e.g., para-
metric or non-parametric), information theory, and visualization basedwere reviewed
in a survey [9]. Similar to comments in the previous section, in order to be employed
towards wearable device and real-time detection, simple thresholding algorithms
using statical parameters are preferred [41–43].

2.2 Performance Metrics

In a multi-class classification task, the confusion matrix provides a summary of the
performance achieved by a classifier. Let C be the number of classes. The confusion
matrixM is a squarematrix ofC × C whereMi, j denotes the number of test outcomes
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(i.e., ground truth labels, Gi ) of class i , that were predicted as class j , Pi (Eq. (2.3)).
The number of successful predicted events (True) for class i , denoted Tii , is the
diagonal line of M . All other members of M are incorrectly predicted events (False),
denoted Fi j where i �= j .

M =

P1 . . . Pi . . . PC⎛

⎜⎜⎜⎜⎜⎝

⎞

⎟⎟⎟⎟⎟⎠

T11 . . . F1i . . . F1C G1
...

. . .
... . . .

...
...

Fi1 . . . Tii . . . FiC Gi
... . . .

...
. . .

...
...

FC1 . . . FCi . . . TCC GC

(2.3)

The sensitivity and positive predictive value (PPV) of class i , Seni and PPVi , are
defined by:

Seni = Tii
Tii + ∑

j �=i Fi j
(2.4)

PPVi = Tii
Tii + ∑

j �=i Fji
(2.5)

Let N be the total number of samples in the dataset. The global sensitivity, PPV, and
accuracy of the classifier are calculated as:

Sensitivity =
∑C

i=1 Seni
C

(2.6)

PPV =
∑C

i=1 PPVi

C
(2.7)

Accuracy =
∑C

i=1 Tii
N

(2.8)

When C = 2, the 2 × 2 confusion matrix is often reported as True Positives (TP),
True Negatives (TN), False Positives (FP), False Negatives (FN) and sensitivity,
specificity, and accuracy are defined as below.

M =
P P

Positive Negative( )
T P FN Ground Positive
FP T N Ground Negative

(2.9)
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Sensitivity = T P

T P + FN
(2.10)

Specificity = T N

T N + FP
(2.11)

Accuracy = T P + T N

T P + T N + FP + FN
(2.12)

F1 = 2T P

(2T P + FP + FN )
(2.13)

Besides, other metrics that have been popularly used are false positive rate (fall-out),
false negative rate (miss rate), positive/negative likelihood ratios, and F1-score [47].
F1-score, which is the harmonic mean of precision and sensitivity, has best value at
1 and worst at 0, is calculated as

In the biomedical literature, intra-class correlations (ICCs) [48] has been also
used to assess the accuracy performance of classifier (i.e., regarding to the agreement
between the classifier and human-labels, called raters) [33, 34]. Though ICCs have
various forms, this thesis only considers oneof six formsof interpretation as described
by Shrout and Fleiss in 1979 [48] and developed by McGraw and Wong [31].
Specifically, ICCs are calculated using data from two-way random effect analysis of
variance models (designation of ICC(A,1)) [31]. In this model, raters and subjects
(i.e., samples to be classified) are random selections from among all possible sources;
also raters classify all subjects chosen at randomwith a knownmethod of rating. The
type of ICC computation in this work is absolute agreement with single measures
that assesses the comparable classification performance of classifiers.

Let O be a datamatrix of size n × k where k is number of raters and n is number of
subjects to be rated. xi j = μ + ri + c j + ei j where i = 1, . . . , n and j = 1, . . . , k.
μ is the population mean for all observations. ri is the row effect that is random
independent and normally distributed with mean 0 and variance σ 2

r . c j is the column
effect that is random independent and normally distributed with mean 0 and variance
σ 2
c . ei j is the residual effect that is random independent and normally distributed with

mean 0 and variance σ 2
e . The row/column/residual effects, ri /c j /ei j , are random inde-

pendent and normally distributed with mean 0 and variance σ 2
r /σ

2
c /σ

2
e respectively.

More details could be found [31].

O =

Rater1 . . . Rater j . . . Raterk⎛

⎜⎜⎜⎜⎜⎝

⎞

⎟⎟⎟⎟⎟⎠

x11 . . . x1 j . . . x1k Subject1
...

. . .
... . . .

...
...

xi1 . . . xi j . . . xik Subjecti
... . . .

...
. . .

...
...

xn1 . . . xnj . . . xnk Subjectn

(2.14)
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Let’s denote the mean squared value for sources of variation to be MSR = kσ 2
r +

σ 2
e for rows, MSC = nσ 2

c + σ 2
e for columns, and MSE = σ 2

e for error. The term ICC
is computed as:

ICC = MSR − MSE

MSR + (k − 1)MSE + k(MSC−MSE )

n

(2.15)

2.3 Feature Engineering

In applied machine learning, success depends significantly on the quality of data
representation (features) [15]. Basic modules involved in a classification application
are illustrated in Fig. 2.1. The process of transforming data into features that are
more relevant to the problem, called feature engineering, can increase prediction
accuracy [59]. Features that are highly correlated with labels can make learn-
ing/sorting steps in the classification module easy. Conversely if label classes are
a very complex function of the features, it could be impossible to build a good
model.

Onemay argue that when label classes are a very complex function of the features, a complex
classification model such as non-linear classifiers using the kernel trick. From the context
of an unsupervised and subject-independent classification application, the approach is not
always helpful.

While learners can be largely general-purpose, feature engineering is usually domain-
specific [15].

This section describes techniques to automatically select salient features from a
large exploratory feature pool (feature selection). Redundant and irrelevant features
are well known to cause poor accuracy so discarding these features should be the first
task. Input features should thus offer a high level of discrimination between classes.
Feature selection can be done using a data-driven approach and can be used as a
common framework for a wide class of problems.

Feature selection has been applied to several applications such as classification,
regression, clustering, association rules and other data mining tasks. This technique
sometimes is called variable (e.g., [19]) or attribute selection (e.g., [22]). In a
selection algorithm, depending on the involvement of class information (labels), the
technique can be a supervised scheme (e.g., [2, 38, 57]) or unsupervised (e.g., [32]).

Fig. 2.1 Feature engineering and sorting algorithms involved in a classification task
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2.3.1 Feature Relevance

The initial choice of features is often an expression of prior knowledge. Some features
may be good representations while others can be irrelevant. Let X be a complete
feature set of the data input. Xi ∈ X is a candidate. Xi ∈ X is a strongly relevant
feature if it contains information that no other candidate does [23]. Xi is a weakly
relevant candidate if it has information that also exists in or in conjunction with other
ones. Hence, Xi is irrelevant if it is neither strongly relevant nor weakly relevant,
otherwise it is relevant.

2.3.2 Feature Selection

Let S ⊂ X be the desired set of relevant features. S = s1, . . . , sm where m is the
number of selected features. The goal of feature selection is to choose S most rele-
vant to the classification task. Identifying the optimal S is an NP-hard problem [6],
dependent on a function usually considering size of S, class distribution, accuracy,
and relevance [13].

Finding all relevant candidates can be done via an exhaustive search through all
the subsets of X , but this is usually not computationally tractable. Starting with an
empty set S = ∅, a forward selection method incrementally adds strongly relevant
features butmaynot find featureswhich are relevant onlywhen combinedwith others.
A backward selection method will start with a full set S = X then remove candidates
that are not strongly relevant. This may also discard weakly relevant candidates.
The backward elimination can evaluate subsets that contain interacting features thus
tends to find better subsets [7]. Search strategies can be an exponential or greedy
search [29], or a randomized search [53]. Greedy searches include sequential forward
or backward or bi-directional selection techniques. When the space X is very large
(e.g., genetic analysis applications), a randomized search is a practical approach in
terms of time complexity.

Several interesting examples [23] show that correlated variables may be useless
by themselves or strongly relevant ones may be not useful for classification. Thus,
a popular approach is finding a good subset of the relevant features with a typical
process of four steps: subset generation, an evaluation function, a stopping criterion,
and validation procedure [13].

After selecting a combination from the space X using a search procedure, each
candidate is evaluated and compared according to a certain objective function until a
given stopping criterion is satisfied. The evaluation step measures the discriminating
ability of a subset with regarding to class labels. Two main groups of objective func-
tions are data intrinsicmeasures [3] and classifier error rates [14]. The former includes
information or uncertainty, distance, and dependence measures. The latter uses the
classification accuracy of a classifier involved in predicting the class labels with
a selected subset. Automated selection algorithms are grouped into filter methods
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Fig. 2.2 Feature selection model with a filter approach. Data intrinsic measures are often saliency
scores using correlation or distance computation

(i.e., use data intrinsic measures and is independent of a classifier) and wrapper
methods (i.e., utilise a classifier within the algorithm) [25]. Recently, combinations
of these methods have been proposed, these being referred to as hybrid [13] or
embedded methods [19].

2.3.3 Automatic Selection Models

2.3.3.1 Filter Models

In filter models, S is selected directly from the data and only relies on data intrinsic
measures. Feature candidates are ranked by a scoring metric and the highest scor-
ing features are added to S. Figure 2.2 depicts these steps for classification. Many
different relevance scores for uncertainty, distance, and dependencemeasures includ-
ing Chi-squared, information gain, Pearson correlation, and mutual information [47]
have been proposed. For clustering applications, popular scores are Euclidean dis-
tance based discrimination [24] and variance ratio [1]. Details of these criteria are
discussed in Sect. 3.1.2. Filters select feature subsets independently of the chosen
predictor and have low computational cost. Accordingly they may fail to address
feature interactions, and the selection criteria are different to the actual learning
algorithm.

2.3.3.2 Wrapper Models

A wrapper selection approach [25] finds S using a predictive model to score can-
didates’ predictive performance in the evaluation loop. Training instances that are
a vector of feature values and a class label are inputs of the learning machine as
illustrated in Fig. 2.3. Each new subset is used to train the model and then validated
using a different test set. The error of the model is used as the score for the subset.
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Fig. 2.3 Feature selection model with a wrapper approach [25]. A predictive model is used to score
subsets’ accuracy performance during cross-validation tests (CV Tests)

To avoid bias, cross-validation (CV) tests [45, 49] that split the training data into
traineting set and validation set are used. The validation results are averaged to define
the error of the subset during training. Popular methods of CV tests include k-fold
CV [35], leave-one-out (LOOCV) [26], random subsampling CV, and bootstrapping
CV [16]. The k−fold CV creates k equal sized partitions of the training data. Let
NT be the total number of training samples. Each partition has NT /k examples. The
training loop uses k − 1 partitions and validates on the remaining partition, repeating
this step k times [35]. Finally, the model is chosen if it has the smallest average
validation error. k is often set as 10. LOOCV is a special case of k-fold CVwhere k =
NT . LOOCV is usually practical if NT is small [26]. The random subsampling CV,
a close case of k-fold CV, chooses the validation set as a randomly sampled subset
of NT with a fixed fraction αNT whereα ∈ (0, 1) and trains with the rest. The loop
is also repeated k times. The common settings of the random subsampling CV is
k = 10 and α = 0.1. The bootstrapping CV is a method of random sampling with
replacement [16].

A wrapper method directly uses the classification error rate to select the subset,
therefore this method tends to perform better than the filter approach. Disadvantages
are that it has high computational cost and overfitting may occur.

2.3.3.3 Advanced Models

Hybrid and embedded approaches are combinations of the two aforementionedmod-
els. In the hybrid method, a filter model is used to reduce the search space for a latter
wrapper model [12, 13, 36]. The learning by the wrapper block in the hybrid model
could be considered as a black box to the work implemented by the filter block [19].
An illustration of this idea is given in Fig. 2.4. Data intrinsic measures are first used
to remove non-salient features. Then only top relevant features are evaluated by a
classifier of interest. The performance of learning is used to further select the subset
that causes the lowest error rate. The hybrid method has advantages of both filter and
wrapper approaches, thus it is faster than a normal wrapper and more accurate than
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Fig. 2.4 Feature selection model with a hybrid approach. First, data intrinsic measures are used
to remove non-salient features. Then high relevant features are evaluated by a classifier (cross-
validation, CV, tests)

a filter method. Furthermore, it is less computationally expensive and less prone to
overfitting than the wrapper model.

Unlike the hybrid combination, the embeddedmethodfinds an optimal S by apply-
ing feature weightings during the model building process (Fig. 2.5). An embedded
model optimizes feature selection and model together rather than separately in two
steps [20]. For example,whenusing theLasso (Least absolute shrinkage and selection
operator) penalty [52], the regularization term of L1-norm is added to the classifica-
tion error [20] and does feature selection by the sparsity of the Lasso solution. For a
given training data set of feature X ∈ R

n×d and label Y ,

X =

⎡

⎣

⎤

⎦
x1(1) . . . x1(d)

...
. . .

...

xn(1) . . . xn(d)

, Y =

⎡

⎣

⎤

⎦
y1
...

yn
(2.16)

The weight w for all feature candidates are considered at once and a regular-
ization penalty that tries to set the weights to zero if their corresponding features
are not relevant (i.e., the criterion based on the learning objective function) is
introduced [20].

min
w∈Rd

1

n

n∑

i=1

(yi − 〈w, xi 〉)2 + λ‖w‖1, (2.17)

where (yi − 〈w, xi 〉)2 is the square loss, λ is a tuning parameter to trade off between
loss and penalty, and ‖w‖1 is L1-norm. For classification, when λ is sufficiently large,
L1-norm will cause most of the weights to be zero [60].
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Fig. 2.5 Feature selection model with an embedded approach. Relevance of features are scored by
the objective function of the learning as a part of the model building

The embedded method often requires less computing resources than the wrapper
methods. However, it is specific to a learning scheme. Sometimes these approaches
are called integrated feature selections. Algorithms using various learning techniques
for an application are referred to as ensemble selection methods.

2.4 Summary

This chapter reviewed related background on classification techniques and feature
selection. Two common unsupervised classification problems are: anomaly detection
which involves two-classs, and x-class sorting which has an unknown number of
classes. A confusion matrix is commonly used to evaluate classifier performance.
Redundant and irrelevant features are known to cause poor accuracy. It is important
to discard such features, and this is often one of the first steps in feature engineering
and classification. Automated techniques for feature selection include filter, wrapper,
and embedded approaches.

Details of data intrinsic scores used in works of this thesis are discussed in the
next Chapter. Specific domain feature extraction is discussed in each scenario of
applications (Chap. 4, 5, 6). The next chapters demonstrate algorithms and their
theoretical calculations.
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Chapter 3
Algorithms

3.1 Feature Engineering

Discarding redundant and irrelevant features which are well known to cause low
learning performance are first tasks of feature engineering. In this thesis, a hybrid
model is proposed to utilize advantages of both filter and wrapper approaches. The
criterion of accuracy is evaluated using simple/low computational cost classification
algorithms. Several saliency criteria have been used at one time and also a voting-
based process is suggested to improve the robustness of features across parameter
settings.

3.1.1 Automated Selection Process

Given a large exploratory feature pool, a voting process is suggested to select the best
feature [13, 15]. This process uses three levels of selection: saliency, robustness, and
accuracy; called Round1, Round2, Round3 respectively (Fig. 3.1). After each level,
selected candidates becomemore favourable. Specifically,Round1 suggests the most
salient and discriminative subset using mutual information (MI), separability calcu-
lated using Euclidean distances (DIS), and the variance ratio of clusters (VarRatio).
After identifying a highly salient subset based on relevance scores, Round2 exam-
ines if the candidates are robust across window sizes or criteria (i.e., are shared in
more than one list). Finally, given a proposed detector, Round3 tests the detection
performance when applying these features.
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Fig. 3.1 Feature selection process with three phases Feature selection process with three phases:
saliency, robustness, and accuracy; called Round1, Round2, Round3

3.1.2 Saliency Criteria

Saliency criteria are conditions used to select the best subset of features. Salient fea-
tures are candidates that are more relevant to the target variable of the classification
task and/or more discriminative. There are three different ranking scores for each
feature. The mutual information (MI) between a candidate and the class label mea-
sures a correlation or the relevance of the feature. The other two types of scores (DIS
and VarRatio) assess the separability of a candidate’s values across class labels, i.e.,
clusterability. DIS scores present the relationship of Euclidean distances between
clusters while the VarRatio uses variance ratio of clusters.
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3.1.2.1 Mutual Information

Let X be a discrete random variable X ∈ X and C be a target variable (c ∈ C) where
X is the input set and C is the output set, i.e., class label set. The entropy Hb(X) of
X measures its uncertainty [16]. Hb(X) is computed as in Eq. (3.2). The conditional
entropy of X given C is defined by:

H(X |C) = −
∑

c∈C
p(c)

∑

x∈X
p(x |c) log p(x |c) (3.1)

where
Hb(X) = −

∑

x∈X
p(x) logb p(x), (3.2)

and b is the base of the logarithm. In this work, b = 2 and hence the entropy is in
bits. p(x) = P{X = x}, x ∈ X is probability mass function.

The mutual information between X and C , MI(X;C), measures the amount of
information shared by X and C , i.e., the relevance of X to C , (Eq. (3.3)) [16].

MI (X;C)
def= H(X) − H(X |C)

=
∑

x∈X

∑

c∈C
p(x, c) log

p(x, c)

p(x)p(c)

(3.3)

3.1.2.2 Clusterability

To assess discrimination of features, relevant candidates are considered having near-
est instances (by Euclidean distances) of same class closer and having nearest ones
of other classes more far apart. The weighting of these distances, called DIS, is cal-
culated with the RELIEF algorithm [7] as implemented in an existing package [3]
and built-in packages by MATLAB (The MathWorks Inc., Natick, MA, 2000).

For VarRatio scores, the variance ratio of a feature X is the ratio of variance
calculation for data within a class (i.e., a cluster) and data between classes (i.e.,
clusters) and is defined as in Eq. (3.4). A higher VarRatio(X) implies that it is easier
to cluster X [1], therefore the feature is more desirable.

VarRatio(X)
def= BC(X)

WC(X)
(3.4)

where BC(X) is the between-cluster variance and WC(X) is the within-cluster
variance.
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3.2 Classification Algorithms

The aforementioned feature engineering process can be described for several appli-
cations, classification scenarios are conversely better illustratedwith particular appli-
cations. This thesis includes three types of applications for the number of class in
a classification task. Two-class with data points or collective instances are first two
discussed, then an unknown class number is presented. For the data point case, data
recording from accelerometers to recognize the timing of a special abnormal walk-
ing status in patients with Parkinson’s disease that is so-called freezing of gait (FoG)
is considered (details of data and application are in Chap.4). Each data point is an
instance of acceleration data in a timeseries. FoG instances can be detected as anoma-
lies. For the collective case, data from each breath cylce during lung function tests
form an instance to classify. Respiratory artefactual breaths can also be detected as
collective anomalies. For the last case, action potentials during electrophysiological
recordings are typical inputs for a sorting problem where the class number can be
unknown.

3.2.1 Point Anomaly Detection Scheme

Let φ(n) be a value of feature vector of length N at time n. For example, in freezing
of gait (FoG) detection, they are often energy metrics of acceleration data [2, 4–6,
8–10, 17] Because there has been also a contextual abnormal increasing of energy
in a specific frequency band of data, an anomaly score that has been shown in the
preliminary work of this thesis to be efficient for this detection, called A(n), of φ(n)

at time n. A(n) determines if the feature value φ(n) extracted from a window at time
n is higher than a threshold (Eq. (3.5)).

A(n) = sign

(
φ(n) − α

|n − 1|
n−1∑

m=1

[φ(m)A(m)]
)

(3.5)

where A(1)=1, n ∈ [2, N ], α > 0 is a scale factor, and sign(x) is 1 if x > 0 else 0.
This thesis proposes an ASD (Anomaly Score Detector) using A(n) to detect such

point anomalies in the FoG application.

3.2.2 Collective Anomaly Detection Scheme

An anomalous collection of related adjacent datan instances is referred to as a col-
lective anomaly. In this thesis, one example for this real life anomalies is detect-
ing respiratory artefact in lung function tests using complete-breath approaches.
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Each sample contains consecutive time instances corresponding to the beginning and
ending of a respiratory cycle. An artefactual breath is an anomaly if it does not con-
form to the expected behaviour as normal breaths (e.g., contaminated by a negative
respiratory resistance value). Earlier works [13, 14] suggest that a binary anomaly
score can be used to detect the respiratory artefacts. Via thresholding, a breath is
marked as an artefact and discarded if one of any data points in the cycle has its
features exceed a given upper bound or are less than a lower one.

Given a set of breaths, B, let φb(n) be a value of the nth instance of feature vector
for breath b (b ∈ B, n ∈ [1, N ]where N is the length of b). In the respiratory artefact
removal application, φb(n) often includes numerical information about the average
respiratory resistance, volume, and flow of the breath. The anomaly score, called
Ab, of φb determines if the feature is within a limited range of [θL , θH ] ∀n ∈ [1, N ]
(Eq. (3.6)).

Ab =
N∏

n=1

sign

(
φb(n) − θL

)
sign

(
θH − φb(n)

)
(3.6)

where θL and θH are defined in a particular application, and sign(x) is 1 if x > 0
else 0.

One example of applying Eq. (3.6) is discussed further in Chap.5 with quartile
information extracted from measurements. Though calculation of θL and θH can be
different across features, to simplify parameter settings, a similar computation is
illustrated with real data in this work.

3.2.3 Correlation Based Spike Sorting Scheme

In the third scenario of applied machine learning for automated classification in
biomedical data, an unknown-class sorting application is presented. For example,
motor unit (MU) activity is analysed using intramuscular EMG data. MU action
potential (MUAP or so-called spike) waveforms can be classified into MU groups
they belong to based on MUAP morphology (Spike sorting). The number of MU is
not known; i.e., the number of classes in the classification task is not given.

Inspired by a preliminary work of this thesis [11], the correlation between spikes
can be used as the similarity measure for such clustering applications [12]. In this
work, after a step of feature extraction from MUAPs (details as in Sect. 6.3), each
spike is presented by a feature vector. Let X and Y be two feature vectors of MUAPX

andMUAPY , respectively, and rX,Y be the correlation between X and Y . Equation3.7
depicts the calculation of Pearson’s correlation by definition for a range of [−1, 1]. A
high rX,Y indicates high similarity between X andY , the aforementioned thresholding
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method can also be applied for this application. Given threshold parameter Θco, a
spike Y belongs to the same class with X if the correlation rX,Y > Θco.

rX,Y = C {X,Y }
σXσY

(3.7)

where rX,Y is the correlation coefficient between MUAP X and MUAP Y . C {X,Y }
is the covariance of two feature vectors X and Y . σX and σY are the variances of X
and Y , respectively.

Let X be a set of spikes and ci be a class assignment variable of a spike si
(s ∈ S). Initially, there is only one single class, c1, that contains the very first spike
waveform collected (i = 1). Then the class assignment c j of a spike s j is determined
by c j = ci if rsi ,s j > Θco where Θco is a parameter of the application, i and j are
indices of spikes (initially i = 1). Let R be the remaining set of spikes with undefined
c j after the above process. These assignments are repeated in a loop until R is empty.

3.3 Summary

Methods of automated feature selection used in this thesis are described in thefirst two
sections. Then the proposed classification techniquesfor applications are described
in the next three sections. The main goal of this task is grouping data into distinct
subsets. In each section, specific anomaly detection and spike sorting algorithms are
introduced.

1. Three saliency scores chosen are mutual information (MI), separability calcu-
lated using Euclidean distances (DIS), and the variance ratio of clusters (VarRa-
tio).

2. Top ranking candidates using these criteria are selected as relevant subsets.
3. The selected features are further filtered using robustness voting criterion across

parameter settings (e.g., window sizes).
4. Finally, performance metrics are used to select the final proposed feature set for

classification applications.
5. For data point and collective sample detection, anomaly scores at time instances

represent if the feature values extracted from windows exceed a threshold.
6. For unsupervised spike sorting that has no pre-defined class information, high

correlation coefficients indicate high similarity between spikes. If the similar
degree exceeds a given threshold, the spikes are considered to belong to the
same class.

The next chapters will discuss in detail for each scenario compared with domain-
knowledge feature extraction.
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Chapter 4
Point Anomaly Detection: Application
to Freezing of Gait Monitoring

4.1 Background on Gait Freezing Detection in Parkinson’s
Disease

Gait is one of the most affected motor characteristics of Parkinson’s disease (PD).
Freezing of gait (FoG) that is defined as a motor block of movement, especially
before gait initiation, during turns or when meeting obstacles [3] is one of the most
common symptoms (e.g., forty-seven percent of the patients reported experiencing
freezing regularly [19]). Moreover, there is a strong relationship between FoG and
falls in people with PD [3, 18, 27].

Current clinical FoG assessment methods are self-reported diaries from patients
(e.g. the Unified Parkinson’s Disease Rating Scale (UPDRS) [7], Freezing of Gait
Questionnaire [11]) and manual video analysis of walking tasks [25, 37]. These
methods are subjective. UPDRS has poor agreement with expert labels (the kappa
statistic only ranged from 0.49 to 0.78) [29]. The reliability of existing manual video
assessment is not robust (within or across multiple participant recruitment sites); the
intra-rater reliability is remarkably low [26].An additional difficulty lies in provoking
FoG during routine clinical examinations [31].

Objective FoG detection is very much desirable, especially out-of-lab deploy-
ment with wearable devices [9, 23]. Compared with kinematic and electrophysio-
logical data (e.g. electromyographic and electroencephalogram), acceleration data
have been widely adopted thanks to the small size of accelerometers, making them
suitable for wearable systems. An early effort was reported [13] with two accelerom-
eters at both ankles. Han et al. [13] found that freezing gait has high frequency
components (6 → 8 Hz) compared with normal gait (2 Hz). Wavelet analysis
[6] has been used to classify normal and freezing gait (including the ratios of
each level’s power to discriminate the freezing and resting states) [13]. A freez-
ing index (FI), defined as the power in the freeze band (3 → 8 Hz) divided by
the power in the locomotor band (0.5 → 3 Hz) [23], has been used to build FoG
detectors [2, 5, 9, 20, 23, 24, 38]. From a machine learning perspective, two main
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classification approaches are: simple thresholding techniques [2, 9, 23, 24, 38] and
supervised/semi-supervised learning classifiers [5, 20]. However, these reports were
based on separate channels.

To extract features, two types of inputs can be used: single input (e.g., single
channels fromsingle sensors (SCSS), the sumof squares of all three channels of single
sensors (MCSS)) and multiple inputs (i.e., multiple channels of multiple sensors,
MCMS). While SCSS and MCSS have been well studied, MCMS is considered for
the first time in this work. Note that the work [24] examined one case of using seven
sensors (only single axis from each sensor was used) that was the majority votes of
seven outputs which we categorize into the SCSS group. MCMS to is used to refer
to a case where feature values are computed from a matrix of inputs.

Recently, apart from FI , several features from accelerometer data (e.g., aver-
age, standard deviation, variance, median, entropy, energy, and power) have been
proposed for FoG detectors [2, 5, 9, 13, 20, 21, 23, 24, 38]. Advanced statistical
techniques to assess gait of human in general (e.g., postural control) can be found in
a comprehensive feature investigation [33], however the work was concerned with
3D motion analysis for trajectory data using a single accelerometer at the lumbar.
The authors concluded that no measure in their study was able to discriminate the
gait patterns of individuals within clinical groups of PD and peripheral neuropathy.
Furthermore, freezing of gait data was not collected in that study.

On the other hand,we explore the newcombinations of inputs.We investigate three
new computation methods: the spectral coherence [4],multi-channel FI (FIMC), and
Koopman spectral analysis [17] (FIK ). FIMC and FIK , are applicable only to MCMS
inputs.

With regard to feature selection algorithms, several other features were
compared with FI [21] including statistical and zero crossing rate (SCSS group),
sum of the Euclidean norm of magnitude, eigenvalues of the covariance matrix,
the mean energy, and principal component analysis over the three axes of the sensor
(MCSS group). Nevertheless, the report [21] was solely based onmutual information
(MI) that measures the correlation of features with labels (Shannon’s information
theory) [34]. This selection could not guarantee the clusterability [1] of the selected
features. A classifier will have better performance with more discriminative features.
Thus, in our work, we explore several extra new features that are extracted from new
analysing function or from multiple channels/sensors concurrently and create an
exploratory feature pool. Besides MI, we rank the pool using two additional saliency
criteria: the variance ratio of clusters [1] and the separability calculated by Euclidean
distances from an instance to a near-hit and near-miss [16].

Several works have been proposed recently with moderate subject-independent
results. For example, despite using the same channel (the vertical axis of the ankle
sensor), a global threshold FI of 2.3 with 6s windowing was suggested [23], then
later on another global FI of 3 with 7s windowing was reported [24]. By examining
the same three locations of sensors as before [24], Zach et al. [38] made a different
choice for the global FI, namely 1.4 (2s windows and the dorsoventral direction of
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the lumbar sensor). In the mean time, the model learning based classifiers have been
only optimized for subject-dependent or group-dependent settings [5, 20].

A primary reason hindering subject-independent performance lies in the
generalization of parameters. One example could be a strong context dependence of
parameters in conjunction with large subject-variability [24]. Therefore, we hypoth-
esize that a detector based on anomaly scores (called ASD) can improve significantly
the subject-independent performance.

4.2 FoG Detector

A data point, i.e., a time instance, is a point anomaly if its behaviours differs from
other data points. For example, in freezing of gait (FoG) detection applications for
patientswithParkinson’s disease, the time instance a patient suffers fromgait freezing
is of interest and is used to compute how long a freezing event lasts for. Therefore,
FoG instances can be considered point anomalies against normal behaviour of the
patient (i.e., non-FoG). In this application, features of an instance are often extracted
in a sliding window manner. Using anomaly detection techniques, FoG events can
be detected by anomaly scores [28].

ASD employs an adaptive rather than fixed threshold. Inspired by observations
of an increase in FI during a FoG event (versus a locomotor activity) [13, 23], we
investigate if this is also the case with other features. When the current feature value
of a data window is lower than the on-the-fly threshold, we consider the window a
potential non-FoG epoch. During detection, the threshold at a time is the average of
all previous values from potential non-FoG epochs (initially is the first data window).
Thus,ASDonly engages in learning from recent activity periods of the corresponding
subject rather than learning globally from several seen subjects. The initial delay of
learning is one window size (e.g., 2s). Furthermore, ASD can avoid any effect of
diurnal variation. After a given typical medium clinical trial duration (e.g., about
thirty minutes in our datasets), we reset the on-the-fly threshold of ASD, i.e., it may
not be averaged across activity contexts. If the reset happens at a anomaly instance,
the low pass filter effect of the ASD (Sect. 3) eventually converges to a normal value.
In other words, ASD is inherently independent of subject variability and diurnal
variation.

This thesis demonstrates an example of ASD usingA(n) (Sect. 3.2.1). Initially, the
first data window is assumed to be normal behaviour. If this assumption is wrong, the
averaging effect of Eq. (3.5) is expected to low pass filter FoG events and eventually
converges to a normal value. The results of a setting with α = 1 (i.e no scaling
deviation are reported in this work.
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4.3 Data Set

We first developed our algorithm with a dataset from the Daphnet project [2]. Then
we deployed out-of-sample tests with a different dataset collected independently
as one part of a larger project for FoG studies [35]. FoG annotations/labels were
assessed on theMovement Disorder Society Unified Parkinson Disease Rating Scale
Section III (MDS-UPDRS-III) [12] and Hoehn and Yahr stage score [14].

4.3.1 Development Set

Seven male and three female advanced PD patients who could walk unassisted in
the OFF period were recruited at Tel Aviv Sourasky Medical Center (TASMC) in
Israel as a part of the EU FP6 Daphnet project (a collaboration with ETH Zurich,
Switzerland) [2]. These ten participants (66.5 ± 4.8 years old) have been diagnosed
with PD for 13.7 ± 9.67 years (Hoehn and Yahr score [14] (H&Y) is 2.6 ± 0.65).
The dataset was recorded in the lab during the OFF stage of the medication cycle of
the participants, except for two participants who reported a frequent FoG experience
during the ON stage. As illustrated in Fig. 4.1, three tri-axial (x—anterior/posterior,
y—medial/lateral, z—vertical) accelerometers were attached at the shank (above the

Fig. 4.1 Three tri-axial
accelerometers were
attached at the shank, thigh,
and lower back
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Fig. 4.2 Histogram of FoG episode durations (second) according to the annotations

Fig. 4.3 Three data channels for one sample recording from a participant

ankle), thigh (above the knee), and lower back (trunk, above the hip) using elasticized
straps. Data was recorded at 64 Hz and transmitted via a Bluetooth link. Figure 4.3
illustrates three data channels for one sample recording from a participant.

Three walking tasks (10−15 min each) were conducted: walking a straight line,
with numerous turns, and a daily living activity (e.g., fetching coffee, opening doors);
more details as in [2]. Three tri-axial accelerometerswere attached at the shank, thigh,
and lower back using elasticized straps. Annotation and simultaneous video taping
were used by physiotherapists to determine the start/end times of FoG episodes. A
FoG event label started when the gait pattern (i.e., alternating left – right stepping)
was arrested and ended when the pattern was resumed [2]. The study was approved
by the local Human Subjects Review Committee, and was performed in accordance
with the ethical standards of the Declaration of Helsinki [2].
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This dataset is recommended to benchmark automatic methods for gait freezing
detection from wearable acceleration sensors. A total of five hundred minutes of
data were collected. Eight participants had FoG while two did not. The walking
distance and number of turns depended on each participant’s execution. A total
of 237 freezing events (0 → 66 per subject, 23.7 ± 20.7) were recognized using
video analysis by physiotherapists (Fig. 4.2). This is used as the ground truth in our
accuracy evaluations. For algorithm development (i.e., ranking features and tuning
parameters), this work uses a random sample of 70% (five) participants who had FoG
events (66 ± 5.9 years old, with PD for 16.2 ± 10.15 years, H&Y score: 2.3 ± 0.44).
For out-of-sample tests, this work uses the remaining subjects (66.8 ± 4.1 years old,
with PD for 11.2 ± 9.6 years, H&Y score: 2.9 ± 0.74). Specifically, the test set
consists of 30% (three) of participants who had FoG and the others with no FoG.

4.3.2 Test Set

We employed an independent data set for out-of-sample tests from a larger FoG study
project [35]. This set included 24 patients (mean±SD age: 69 ± 8.41 with advanced
PD (mean ±SD Hoehn and Yahr: 2.66 ± 0.53; UPDRS III: 40.24 ± 11.06) at
Parkinsons Disease Research Clinic (the Brain and Mind Research Institute, Univer-
sity of Sydney, NSWAustralia). These participants had severe self-reported freezing
behavior and satisfied UKPDS Brain Bank criteria [10]. The subjects were deemed
unlikely to have dementia or major depression according to DSM-IV criteria (by
consensus rating of a neurologist and a neuropsychologist) and had a mean ±SD
Mini-Mental State Examination (MMSE) [8] score of 28.57 ± 1.61. The study was
approved by the Human Research and Ethics Committee at the University of Sydney
and written consents from participants obtained.

Participants were recorded in the practically-defined off state following overnight
withdrawal of dopaminergic therapy. Six patients also had Deep Brain Stimulation
(five Subthalamic Nuclei and one Pedunculopontine Nuclei), which were turned off
for one hour prior to assessment. None of the patients described any increase in
freezing behavior following the administration of their usual dopaminergic therapy.

Walking tasks were described in detail [35] that were designed to best provoke
FoG during data collection. Participants started from a sitting position, walked along
a corridor about five meters meeting a marked square on the floor (size of 0.6 m)
then made a turn (180◦ or 540◦ to the left or right of the subject) as shown in Fig. 4.4.
Each task was introduced to a participant at the beginning of the trial, if the subject
had failed to meet the procedure, the measurement was abandoned. Each trial was
started by a signal from the investigator andwas completed on return to the beginning
position.

Data from accelerometers were acquired by seven tri-axial sensors attached to
each subject at the back, foot, thigh and/or knee (further details as in the previous
work [24]). These sensors were inertial measurement units (IMUs—Xsens MTx,
Enschede, Netherlands) that were 38 × 53 × 21mm and 30 g. Data was transmitted
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Fig. 4.4 Walking tasks
description for FoG
detection. Tasks started from
a sitting position, walked
along a corridor about five
meters meeting a marked
square on the floor (size of
0.6 m) then made a turn
(180◦ or 540◦ to the left or
right of the subject) [35]

via a wireless link to a computer (sampling frequency of 50 Hz). Clocks of computer
for data acquisition and of the video camera were used to synchronize the timing
between clinical annotations and acceleration measurement.

Manual assessment ofFoGwasmadebyclinicians (neurologist/neuropsychologist
experienced in FoG) using video taped during each trial. These annotationswere con-
verted to binary labels (“0” for non-FoG or “1” for FoG each time instance). Each
trial was assessed by two clinicians. The official label was determined hlto be FoG if
at least one clinician marked as such. Agreement of these two raters was previously
reporteddwith high intraclass correlation coefficient (0.82 for number of FoG epochs
and 0.99 for percent time frozen) [24, 35]).

For a better comparison with the development stage, we selected data from all
three tri-axial channels at three sensor locations of back, left thigh, and left shank.
There were total of 71 trials across 15 subjects with six different walking procedures.

4.4 Feature Extraction

4.4.1 Existing Features

Bachlin et al. [2] had reported a relationship between FoG status and the power spec-
tral density distribution from 0 → 128 Hz for walking, FoG, and standing. Accord-
ing to the published distribution [2], 0 → 30 Hz is the main frequency range for
human movement. Walking and FoG status have about 96% of the total energy while
the PSD of standing is dominated by sensor noise. They also claimed that the total
energy content of standing is substantially lower than for FoG orwalking. Hence, this
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report applied these special features of LocoBand of [0.5 → 3 Hz] and FreezeBand
of [3 → 8 Hz] to help detect a FoG event with power and freeze index values P
(Eq. 4.1) and FI (Eq. 4.2) in this work.

P = PH + PL (4.1)

FI = PH

PL
(4.2)

PH =
∑H2

i=H1+1 PXX (i) + ∑H2−1
i=H1

PXX (i)

2fs
(4.3)

PL =
∑H1

i=L+1 PXX (i) + ∑H1−1
i=L PXX (i)

2fs
(4.4)

where PXX is power spectrum of acceleration data; NFFT is the window size of FFT
transform; fs is sampling frequency, H1 = 3NFFT

fs , H2 = 8NFFT
fs , L = 0.5NFFT

fs
.

4.4.2 New Features

Westudy four new features. Thefirst twouse single input data channels: themaximum
and number of peaks in the spectral coherence [4] (called CXYNpks and CXYmax). The
others use multiple inputs: FIMC and FIK . Let x and y be two consecutive data
windows. The spectral coherence CXY between x and y using the Welch method [4]
is CXY (ω) = PXY (ω)√

PXX (ω).PYY (ω)
where ω is frequency, PXX (ω) is the power spectrum of

signal x, PYY (ω) is the power spectrum of signal y, and PXY (ω) is the cross-power
spectrum for signals x and y.WhenPXX (ω) = 0 orPYY (ω) = 0, thenPXY (ω) = 0 and
CXY (ω) is assumed as zero. The power and cross spectra are:PYY (ω) = Fy(ω).Fy(ω);
and PXY (ω) = Fx(ω).Fy(ω).

Let a matrix X of size N × M represent a N -channel recording session with M
regularly spaced time samples. Similar to the single input FI, FIMC is the ratio of
powers PH to PL (i.e., for the freeze and locomotor bands) that are summations of
single powers over N channels. Specifically:

PH = 1

2fs

N∑

n=1

[
H2∑

i=H1+1

[PXXn(i)] +
H2−1∑

i=H1

[PXXn(i)]] (4.5)

PL = 1

2fs

N∑

n=1

[
H1∑

i=L+1

[PXXn(i)] +
H1−1∑

i=L

[PXXn(i)]] (4.6)

FIMC = PH

PL
(4.7)
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where N is number of channels, n is the channel identification, fs is sampling fre-
quency, H1 = 3NFFT

fs
, H2 = 8NFFT

fs
, L = 0.5NFFT

fs
.

We also extract another type of freeze index fromX, called FIK , that results from
a spectral analysis using the Koopman operator [17]. This computation was intro-
duced to study the spectrum of Hamiltonian systems by using linear transformations
on Hilbert space. Dynamic Mode Decomposition [32] is a technique to estimate a
linear model with Koopman eigenfunctions and eigenvalues. Inspired by a feature
extraction application [15], Koopman eigenvalues and eigenfunctions are considered
as frequencies (2πλ) and the power (K(2πλ)); details of equations and algorithms
can be found [15]. Hence, FIK is defined as follows,

FIK =
∑H2

λ=H1+1 K(2πλ)
∑H1

λ=L+1 K(2πλ)
(4.8)

where H1 = 3NFFT
fs

, H2 = 8NFFT
fs

, L = 0.5NFFT
fs

, fs is sampling frequency.

4.4.3 Anomaly Scores

Basically, the anomaly score of a feature value at time n, A(n), determines if the
feature value extracted from a window at time n is higher than a threshold (i.e., is an
anomaly). In this case study report, A(n) is calculated using Eq. (3.5) (Sect. 3.2.1)
with the scale factor α = 1 (i.e., a simple case of no scaling deviation).

4.4.4 Exploratory Pool

We construct a feature pool that consists of 244 features (Table4.1). The first half
of the pool are 122 candidates, extracted using seven previously published features
and our four aforementioned new features. Existing extraction methods include aver-
age, standard deviation, variance, median, entropy, energy, power and FI as found
[2, 5, 9, 13, 20, 21, 23, 24, 38]. New methods consist of the maximum and num-
ber of peaks of CXY in the spectral coherence [4], multi-channel FI ( FIMC), and
the Koopman spectral analysis ( FIK ) [17]. These eleven extraction functions are
applied to single and multiple inputs. Specifically, FIMC and FIK are applied to
MCMS while the other functions are to SCSSs and the sum square of all three chan-
nels of single sensors. The second half of the pool consists of 122 anomaly score
vectors (Sect. 4.4.3) of the above 122 features.
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Fig. 4.5 Feature selection process. 244 features as described in Table4.1. 7 window sizes are
2 → 8 s in steps of 1 s. Three saliency criteria are DIS, MI, Var-Ratio scores. Common candidates
are entries that are shared by more than one list of Round1

4.4.5 Feature Selection

We propose a voting process to select the best feature from the large exploratory
pool (as introduced in Sect. 2.3). This process uses three levels of selection: saliency,
robustness, and accuracy; called Round1, Round2, Round3 respectively (Fig. 4.5).
After each level, selected candidates become more favourable. Specifically, Round1
suggests the most salient and discriminative subset. Then, Round2 examines if the
candidates are robust across window sizes. Finally, Round3 tests the detection per-
formance of these features using our ASD.
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In Round1, feature candidates are ranked according to three saliency criteria, i.e.,
mutual information (MI), separability calculated using Euclidean distances (DIS),
and the variance ratio of clusters (Var-Ratio). This step is implemented across 7
window sizes (2 → 8 s in steps of 1 s), creating 21 lists of ranking scores. The range
for window sizes is based on the minimum and maximum values currently suggested
in the literature (e.g., 2 s [38] and 7.5 s [24]). After finding a subgroup of high
saliency score, the robustness is examined in Round2. Secondly, salient candidates
are identified that shared in more than one list across window sizes or criteria (i.e.,
robustness). Finally, accuracy metrics are used to find the subset for our ASD.

4.5 Performance Metrics

In the literature, automatic techniques have been evaluated using different measures
such as confusion matrices and/or intra-class correlations (ICCs) [36]. For instance,
authors of [2, 20, 21] used timing-instance-based confusion matrices (i.e., counting
FoG time frames and often involving a tolerance of milliseconds or seconds); and
authors of [9, 23, 24, 38] used event-based confusion matrices (i.e., counting contin-
uous FoG epochs) and ICCs on the number of FoG events or percentage of freezing
time over a trial. With regard to real-time applications using wearable FoG detec-
tors, the timing-based method is of most interest, whereas event-based is important
in clinical FoG assessments. We utilize both types during feature selection as extra
criteria (apart from saliency scores).

In our work, ICCs are used as supplemental criteria during Round3 to select
features rather than in performance comparisons with other works due to several
limitations of ICC usages; e.g., intra-rater reliability reported for FoG number was
only 0.44 and at least two observers are recommended to analyse task videos [26]. In
this work, information regarding the reliability for manual ratings were not available
(nor were the number of raters). Thirdly, walking tasks were designed to have a single
recording session per subject (about 30min) rather than several short trial recordings
(around one minute each). Hence, because in our data set the number of individual
recordings is relatively small, thus, data are grouped into one-minute segments. We
assume that the segmentation is close to the multi-trials settings. Therefore, our
estimation of ICC is a non-decreasing relationship with the reported ICC in the
literature. Given two vectors of an automatic detection result and manual labels,
the estimated intraclass correlation is calculated as [22]; specifically the ICC(A-1)
designation is used (two-way random effects) for the degree of absolute agreement
among measurements.

With respect to the timing-based metrics, in confusion matrices, ground truth is
referred to the manual video analysis, and positives for FoGwindows. True Positives
(TP) are windows which were marked as FoG by both a test algorithm and the label.
False Positives (FP) are windows labelled as FoG but did not agree with the ground
truth.Windows that the test method failed to label as FoG but were annotated as such,
are defined as False Negatives (FN). When the test method and the human agree a
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window was non-FoG, it is counted as a True Negative (TN). Please note that the
reference labels used in this work were made by human thus are subjective. Likewise
the literature works [2, 20], we investigate a tolerance, tol. Let t be the time instance
an automated method decides it is FoG. If within the range of [t − tol, t + tol], there
is at least one instance where the reference (i.e., manual method) says it is FoG, we
count this agreement is a true positive. Otherwise it is a false positive. Similarly for
negative cases. The tolereance will be determined during the experiments using the
performance curves (ROC).

Sensitivity and specificity are TP
TP+FN and TN

TN+FP , respectively. F1-score, which is
the harmonic mean of precision and sensitivity, with best value at 1 and worst at 0
[30], is calculated as 2TP

(2TP+FP+FN )
.

4.6 Results

4.6.1 Selection by Saliency

Three types of ranking scores (i.e., MI, DIS, and Var-Ratio) across window sizes for
each feature candidate were measured (Fig. 4.6). An example feature ranking with
window size of 2s using three saliency metrics are illustrated in Fig. 4.6 (a, b, c)
(sorted from high to low scores). The order of ranking is from 1 to 244 (high to low);
a higher saliency score indicates the higher ranking order. The other window sizes
shared a similar trend.

As can be seen, scores outside the top ten rank (outside of the dotted vertical line)
dropped quickly. Therefore, these ten candidates were selected for further steps.
Specifically, Round1 contains 210 entries of 21 short lists. We noticed that there
were only 64 distinct features in Round1. For example, Fig. 4.6d to k illustrate that
the top-ten lists share many features. In these sub-plots, new features are indicated
with circle markers and labelled horizontal axes with feature identifications (IDs).
Description of IDs canbe found inTable4.1.Our shortlists includeFI0y (i.e., freezing
index from ankle at vertical axis [2, 20, 23]) and previously proposed features (e.g.,
FI2y [24], FI2x [38], energy, sum of power Psum [2], and their standard deviation,
mean, variance [21]). Among the 64 distinct features, our new candidates, CXYNpks,
CXYmax, FIK , and FIMC , were listed in more top-ranking lists than the existing ones.

4.6.2 Selection By Robustness

In the second round, members of Round1 that are selected as the top ten in more
than one list (across window sizes and/or criteria) are considered robust features.
There were 33 entries in Round2 (i.e., about half of Round1). Interestingly, FIMC is
one of the most robust candidates in terms of being selective across window sizes
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Fig. 4.6 Example of feature ranking and the shortlists. a, b, c are ranking scores for the feature
pool; aDIS, bMI, cVar-Ratio scores. Vertical axes: saliency scores. Horizontal axes: ranking order.
The top-ten lists are in the dotted boxes. The others, d–k, illustrate the sharing among shortlists
across window sizes and criteria. Features with circle markers are new while others are have been
currently used in literature. The top ten identifications (IDs) of features are detailed in Table4.1
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(Table4.2). Other new or popular existing candidates are also added in the table for
comparison purposes.

4.6.3 Selection By Detection Performance

In the third round, a simple form of ASD (Sect. 3.2.1) is used to rank features in
Round2 by performance criteria. We also examined our other new or popular exist-
ing features (Table4.2) for comparison purposes. ICCs results for freezing time
percentage and number of FoG showed only seven candidates that had at least one
report of ICC > 0.2 (suggestion from [26]), as shown in Fig. 4.7. These candidates
are FIMC , FI2y, FI2x, FI1z, FI0y, Mean 0z, and Mean 1z (Table4.1).

During training period, the receiver operating characteristic (ROC) is calculated
for each window size of each feature extraction with a timing tolerance range from
0 → 1 s in steps of 0.1 s. We observed that configurations FIMC (3 s), FI0y (2 s or
7 s), FI1z (6 s), FI2y (3 s or 8 s), calledRound3, had excellent results (Fig. 4.8). Due to
the difficulty of visualizing ROCs across many variables, F1-scores were displayed
in Fig. 4.8 instead.

Fig. 4.7 ICCs for feature selection in FoG detection. Markers are for different features. Estimated
ICC for the freezing time percentage (Left) and number of FoG events (Right)
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Table 4.2 Thirty-three top salient and robust features (Round2) and four others of interest. IDs are
identifications of features. ‘Std’: standard deviation. DIS, MI, and Var-Ratio are criteria

Feature ID Name Sensor, Channel Window sizes (second)

DIS MI Var-Ratio

244 FIMC all all – –

194 Std 2,y – all 2

124 Std 0,x 8 all 3

214 Std 0,xyz 4,8 all 4,6,7,8

134 Std 0,y 8 all 6,8

154 Std 1,x 4,5 all –

174 Std 1,z 3 all –

184 Std 2,x 4, 5, 6 2 all

138 Energy 0,y 3 – all

98 Psum 0xyz – 3 → 7 –

224 Std 1xyz 3 → 8 – –

155 Variance 1x 4 → 7 – –

198 Energy 2y 6 – 2 → 5,7

26 Energy 0z – – 2 → 5,7

102 Std 1xyz – 2 → 5 5,7

164 Std 1y 7 2 → 5,8 –

215 Variance 0xyz – – 4 → 8

188 Energy 2x 4 – 2 → 5

112 Std 2xyz 6 2 → 5 –

175 Variance 1z 7 6,7,8 3,6

158 Energy 1x 7 – 6,7,8

22 Std 0z 7,8 6,7,8 –

116 Energy 2xyz – – 2,3,5

135 Variance 0y – – 6,8

93 Variance 0xyz – 6,7,8 –

185 Variance 2x 3,6 – –

139 FI [23] 0y 4,5 – –

173 Mean 1z 4,5 – –

179 FI 1z 2,3 – –

225 Variance 1xyz 3,7 – –

143 Mean 0z 5,8 – –

20 Cxymax 0y – – 4,5

60 Cxymax 1z – – 4,5

195 Variance 2y 2,6 – 2

Other new or existing features for comparison purposes

141 CxyNpks 0y 2 – –

243 FIK all 8 – –

199 FI [24] 2y 6 – –

189 FI [38] 2x – – –
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Fig. 4.8 Effects of window sizes and tolerances on F1-scores of ASD. Tolerance from 0 → 1 s.
Three dimensional view for windows from 2 → 8 s. Markers are for different features

4.6.4 Tests and Comparisons with the Same Cohort Set

We then applied unseen test sets (five subjects who have been with PD for 11.2 ± 9.6
years; H&Y score: 2.9 ± 0.74) to validate ASD. Three subjects had FoG during data
collection while the other two had no FoG. We noticed that, during the validation,
FIMC (3 s) and FI2y (3 s) had high accuracies with lowest deviation between training
and out-of-sample tests (Table4.3). FI0y, a popular feature in existing detectors (7 s
windows), achieved a sensitivity of 79% (specificity of 79.5%) at a tolerance of 0.3 s.
On the other hand, FI0y scores the highest F1-score of 84% with 2s window size
(tolerance of 0.9 s). FI2y with 8 swindows and 0.9 s tolerance can achieve sensitivity
of 87.5% (specificity of 84.5%).

Hence, we propose an optimization configuration for ASD as follows: window
size as small as 3 s, tolerance for performance measurements of 0.4 s, freezing
index is used for feature extraction. There was a slight preference of sensor locations
between ankle and hip in terms of further performance improvement.

Table 4.3 Development performance of ASD using features in Round3. ‘Win’: window size. ‘Tol’:
tolerance. ‘SD’: standard deviation of development and out-of-sample test. Performance in%. Sens:
Sensitivity. Spec: Specificity. F1: F1-score
Feature
ID

Name
Channel

Parameter Development (%) Out-of-sample (%) Average ± SD (%)

Win. Tol. Sens Spec Sens Spec Sens Spec F1
244 FIMC 3s 0.2s 85 74.0 77.0 80.0 81.0 ± 6 77.0 ± 4 74.5 ± 6

139 FI 0y 2s 0.9s 88.0 81.0 86.0 63.0 87.0 ± 1 72.0 ± 13 84.0 ± 10

7s 0.3s 71.0 93.0 87.0 66.0 79.0 ± 11 79.5 ± 19 82.5 ± 11

179 FI 1z 6s 0.1s 80.3 80.0 82.0 58.0 81.0 ± 1 69.0 ± 16 78.0 ± 6

199 FI2y 3s 0.4s 75.0 80.0 83.0 92.0 79.0 ± 6 86.0 ± 8 76.5 ± 12

8s 0.9s 76.0 74.0 99.0 95.0 87.5 ± 16 84.5 ± 15 82.0 ± 24
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4.6.5 External Validation Tests

Finally, using independent test sets that were from a different cohort to the one
we used for training (Sect. 4.3.2), we validated our proposed ASD-based method
(i.e., online ASD detector, freezing index feature, window size of 3 s). Though the
performance improvement between ankle and hip sensor locationswas not significant
during the development stage, for a better comparison with existing works that used
both types of inputs: single channel and multiple channels, such cases were still
included in our report. Table4.4 shows its high accuracy performance comparing
with earlier works across several configurations of inputs.

Table 4.4 Out-of-sample detection performance of ASD (versus existing methods [2]a [20]b [24,
38]c,d) across configurationse and datasetsf . Performance in %

Method Settings Performance (%)

Input Win Tol Sensitivity Specificity F1

CNR [2] FI0y,
Psum0y

4s 2s 73.1a 81.6a –

Learning
[20]

Mean0y,
Std0y, FI0y,
Energy0y

4s 1s 66.25b 95.38b –

Global [24] FI012yd,
FI = 3

7.5s – 84.3c 78.4c –

Global [38] FI2x,
FI = 1.47

2s – 75.0c 76.0c –

Online ASDs (proposed), external validatiof

ASD
multi-inputs

FIMC 3s 0.4s 96 ±17 79 ±41 99 ±7

ASD ankle
y-axis

FI0y 3s 0.4s 94 ±23 84 ±36 99 ±4

ASD hip
y-axis

FI2y 3s 0.4s 89 ±32 82 ±39 96 ±18

ASD hip
x-axis

FI2x 3s 0.4s 89 ±32 94 ±23 97 ±17

aas reported [2] using CNR classifier and LOOCV
bas reported [20] using Random Forest classifier and LOOCV
cfor event-based calculation while others were for timing-based
dthe majority vote of seven sensors [24].
eInput: features, sensors, and axes. ‘Tol’: tolerance. ‘Win’: window size
f71 trials of 15 subjects; different cohort to the training set (same to the work [24])
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4.7 Discussion

During the development stage, we observed that beside the existing FI extracted from
ankle sensor at vertical axis, our new feature with multiple channels, FIMC , is one
of the top features in saliency, clusterability, and robustness. Only seven out of 244
candidates met requirements of our three-round selection procedure. To detect FoG,
we implemented an anomaly score based detector, ASD. With ASD, our features
outperformed existing works with a small window and/or low tolerance. Specifically,
FI2y, the freezing index from vertical data at a hip sensor, was found to be the best
choice for performance; achieving sensitivity (specificity) of 87.5% (84.5%) with 8 s
windows and 0.9 s tolerance.FIMC , is also a promising candidate. For example,FIMC

has high ICC and is the most robust candidate across window sizes during feature
selection by saliency. FIMC achieved a sensitivity of 81% (specificity of 77%) at the
smallest tolerance of 0.2 s (3 s windows).

During the test stage, we reported out-of-sample test outcomes in as many similar
configurations as suggested from compared works. Our ASD that performed better
than currentmethods can use only one type of feature extraction (freezing index) from
a single channel. It is flexible and convenient to choose a sensor location between
ankle and hip. Our proposed method significantly outperforms (e.g., mean (±SD)
of sensitivity, specificity are 94% (±23%) and 84% (±36%) for ASD ankle y-axis)
other automated methods in the literature.

Regarding the system design, to the best of our knowledge, [5, 20] achieved the
best published performance to date for subject-independent settings. Specifically,
with different reported configurations, these two methods used a context recognition
network [2] and a Random Forest [20] with leave one out cross validation tech-
niques (LOOCV). Other works used various global FI values with different channel
selection. Note that, sensitivities and specificities [23, 24, 38] were for event-based
calculation that may differ from the others in Table4.4. Our detector is an anomaly
detection technique that has low computational cost and is feasible for real-time
operation in a subject-independent manner. As presented, our performance is sig-
nificantly higher than the one of compared automatic detectors while using a much
smaller window and/or lower tolerance.

4.8 Summary

In this chapter, one successful application of our novel supervised voting technique
for feature engineering with application to point anomaly detection in FoG monitor-
ing is demonstrated. Previousmethods have utilised features yielding high variability
across time and subjects. The new features found using our technique are not only
more sensitive, they also have lower temporal and subject-dependent variation. These
features were exploited to achieve an improve anomaly detector with low computa-
tional cost.



46 4 Point Anomaly Detection: Application to Freezing of Gait Monitoring

References

1. Ackerman M, Ben-David S (2009) Clusterability: a theoretical study. In: International confer-
ence on artificial intelligence and statistics, pp 1–8

2. Bachlin M, Plotnik M, Roggen D, Maidan I, Hausdorff J, Giladi N, Troster G (2010) Wearable
assistant for Parkinson’s disease patients with the freezing of gait symptom. IEEE Trans Inf
Technol Biomed 14(2):436–446

3. Bloem B, Hausdorff J, Visser J, Giladi N (2004) Falls and freezing of gait in Parkinson’s
disease: a review of two interconnected, episodic phenomena. Mov Disord 19(8):871–884

4. Challis R, Kitney R (1990) Biomedical signal processing (part 3 of 4):the power spectrum and
coherence function. Med Biol Eng Comput 28(6):509–524

5. Cole B, Roy S, Nawab S (2011) Detecting freezing-of-gait during unscripted and unconstrained
activity. In: Annual international conference of the IEEE engineering in medicine and biology
society, EMBC, pp 5649–5652

6. Daubechies I, Bates BJ (1993) Ten lectures on wavelets. J Acoust Soc Am 93(3):1671–1671
7. Fahn S, Elton R (1987) Unified rating scale for Parkinson’s disease. In: Recent developments

in Parkinson’s disease, pp 153–163
8. FolsteinMF, Folstein SE,McHugh PR (1975) mini-mental state: a practical method for grading

the cognitive state of patients for the clinician. J Psychiatr Res 12(3):189–198
9. Gazit E, Bernad-Elazari H, Moore S, Cho C, Kubota K, Vincent L, Cohen S, Reitblat L, Fixler

N, Mirelman A et al (2015) Assessment of Parkinsonian motor symptoms using a continuously
worn smartwatch: preliminary experience. Mov Disord 30:S272–S272

10. Gibb WRG, Lees A (1988) A comparison of clinical and pathological features of young-and
old-onset Parkinson’s disease. Neurology 38(9):1402–1402

11. Giladi N, Tal J, Azulay T, Rascol O, Brooks DJ, Melamed E, Oertel W, Poewe WH, Stocchi
F, Tolosa E (2009) Validation of the freezing of gait questionnaire in patients with Parkinson’s
disease. Mov Disord 24(5):655–661

12. Goetz CG, Tilley BC, Shaftman SR, Stebbins GT, Fahn S, Martinez-Martin P, Poewe W, Sam-
paio C, Stern MB, Dodel R et al (2008) Movement Disorder Society-sponsored revision of the
Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric
testing results. Mov Disord 23(15):2129–2170

13. Han J, Lee W, Ahn T, Jeon B, Park KS (2003) Gait analysis for freezing detection in patients
with movement disorder using three dimensional acceleration system. In: Proceedings of the
25th annual international conference of the IEEE engineering in medicine and biology society,
vol 2, pp 1863–1865

14. Hoehn MM, Yahr MD (1998) Parkinsonism: onset, progression, and mortality. Neurology
50(2):318–318

15. Hua JC, Roy S, McCauley JL, Gunaratne GH (2016) Using dynamic mode decomposition to
extract cyclic behavior in the stock market. Phys A Stat Mech Appl 448:172–180

16. Kira K, Rendell LA (1992) The feature selection problem: traditional methods and a new
algorithm. In: Proceedings of the tenth national conference on artificial intelligence, AAAI
Press, AAAI’92, pp 129–134. http://dl.acm.org/citation.cfm?id=1867135.1867155

17. KoopmanBO (1931) Hamiltonian systems and transformation in Hilbert space. Proc Natl Acad
Sci USA 17(5):315

18. Latt M, Lord S,Morris J, Fung V (2009) Clinical and physiological assessments for elucidating
falls risk in Parkinson’s disease. Mov Disord 24(9):1280–1289

19. Macht M, Kaussner Y, Moller J, Stiasny-Kolster K, Eggert K, Kruger H, Ellgring H (2007)
Predictors of freezing in Parkinson’s disease: a survey of 6,620 patients.MovDisord 22(7):953–
956

20. Mazilu S, Hardegger M, Zhu Z, Roggen D, Troster G, Plotnik M, Hausdorff J (2012) Online
detection of freezing of gait with smartphones and machine learning techniques. In: 6th inter-
national conference on pervasive computing technologies for healthcare (PervasiveHealth), pp
123–130

http://dl.acm.org/citation.cfm?id=1867135.1867155


References 47

21. Mazilu S, Calatroni A, Gazit E, Roggen D, Hausdorff JM, Tröster G (2013) Feature learning
for detection and prediction of freezing of gait in Parkinson’s disease. In: Machine learning
and data mining in pattern recognition. Springer, pp 144–158

22. McGraw KO, Wong SP (1996) Forming inferences about some intraclass correlation coeffi-
cients. Psychol Methods 1(1):30

23. Moore S, MacDougall H, OndoW (2008) Ambulatory monitoring of freezing of gait in Parkin-
son’s disease. J Neurosci Methods 167(2):340–348

24. Moore ST, Yungher DA, Morris TR, Dilda V, MacDougall HG, Shine JM, Naismith SL, Lewis
SJG (2013) Autonomous identification of freezing of gait in Parkinson’s disease from lower-
body segmental accelerometry. J Neuroeng Rehabil 10(1):1

25. Moreau C, Defebvre L, Bleuse S, Blatt J, Duhamel A, Bloem B, Destée A, Krystkowiak P
(2008) Externally provoked freezing of gait in open runways in advanced Parkinsons disease
results from motor and mental collapse. J Neural Transm 115(10):1431–1436

26. Morris TR, Cho C, Dilda V, Shine JM, Naismith SL, Lewis SJ, Moore ST (2012) A comparison
of clinical and objective measures of freezing of gait in Parkinson’s disease. Parkinsonism
Related Disord 18(5):572–577

27. Paul S, Canning C, Sherrington C, Lord S, Close J, Fung V (2013) Three simple clinical tests
to accurately predict falls in people with Parkinson’s disease. Mov Disord 28(5):655–662

28. Pham TT, Moore ST, Lewis SJG, Nguyen DN, Dutkiewicz E, Fuglevand AJ, McEwan AL,
Leong PH (2017) Freezing of gait detection in Parkinson’s disease: a subject-independent
detector using anomaly scores. IEEE Trans Biomed Eng 64(11):2719–2728

29. Reimer J, Grabowski M, Lindvall O, Hagell P (2004) Use and interpretation of on-off diaries
in Parkinson’s disease. J Neurol Neurosurg Psychiatry 75(3):396–400

30. Rijsbergen CJV (1979) Information retrieval, 2nd edn. Butterworth-Heinemann, Newton, MA,
USA

31. Schaafsma J, Balash Y, Gurevich T, Bartels A, Hausdorff J, Giladi N (2003) Characterization
of freezing of gait subtypes and the response of each to levodopa in Parkinson’s disease. Eur J
Neurol 10(4):391–398

32. Schmid PJ (2010) Dynamic mode decomposition of numerical and experimental data. J Fluid
Mech 656:5–28

33. Sejdi E, Lowry KA, Bellanca J, Redfern MS, Brach JS (2014) A comprehensive assessment of
gait accelerometry signals in time, frequency and time-frequency domains. IEEE Trans Neural
Syst Rehabil Eng 22(3):603–612

34. Shannon C (1948) Amathematical theory of communication. Bell Syst Techn J 27(3):379–423
35. Shine J, Moore S, Bolitho S, Morris T, Dilda V, Naismith S, Lewis S (2012) Assessing the

utility of freezing of gait questionnaires in Parkinsons disease. Parkinsonism Relat Disord
18(1):25–29

36. Shrout PE, Fleiss JL (1979) Intraclass correlations: uses in assessing rater reliability. Psychol
Bull 86(2):420

37. Snijders AH, Weerdesteyn V, Hagen YJ, Duysens J, Giladi N, Bloem BR (2010) Obstacle
avoidance to elicit freezing of gait during treadmill walking. Mov Disord 25(1):57–63

38. Zach H, Janssen AM, Snijders AH, Delval A, FerrayeMU, Auff E, Weerdesteyn V, Bloem BR,
Nonnekes J (2015) Identifying freezing of gait in Parkinson’s disease during freezing provoking
tasks using waist-mounted accelerometry. Parkinsonism Relat Disord 21(11):1362–1366



Chapter 5
Collective Anomaly Detection:
Application to Respiratory Artefact
Removals

5.1 Background on Respiratory Artefact Removal
in FOT Data

The forced oscillation technique (FOT) [11] is a lung function test that can provide
useful information from short duration recordings, and only requires passive coop-
eration from the subject [30]. FOT assesses breathing mechanics by superimposing
small external pressure signals to the spontaneous breathing of the subject.A total res-
piratorymechanical impedance (Zrs), which includes airway resistance together with
elastic and inertive behavior of the lungs and the chest wall, is then measured at one
oscillation frequency (mono-frequency oscillations) or several (multi-frequency).
Zrs is described as a complex number with real and imaginary components, called
the resistance (Rrs) and reactance (Xrs) respectively. A primary reason hindering
its widespread adoption lies in difficulties associated with removing artefacts. This
results in lower reproducibility than the most common pulmonary function test, or
spirometry. Manual removal by operators, called the human-based method, is cur-
rently considered the gold standard for respiratory artefact removal practice. This,
however, is typically done in an ad-hoc manner which is laborious, and subjective.

To detect artefacts, several automated refinements include detecting low (e.g.,
transducer noise) and high frequency artefacts (e.g., light coughing,mouth piece leak,
swallowing, glottic closure and tongue occlusion) are necessary. According to the
quality control guidelines [17], low frequency noise removal rejects low magnitude-
squared coherence values of pressure and flow [26]. Several transient artefacts are
removed by identifying deviations from the norm, called thresholding approaches.

To exclude respiratory artefacts, two different strategies are point rejection [5, 6,
28] and complete-breath rejection [24, 26]. For example, a point-basedmethod called
3SD [28], introduced a statistical filter that rejected any impedance points greater
than three standard deviations (SD) from the mean Rrs or Xrs value. Alternatively,
the complete-breath approach rejects entire breaths as defined by the starting and
ending points of breath cycles in which at least one data point is out of the 3SD
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range [26], called B-3SD method. The complete-breath rejection has been reported
to be more accurate than the point approach as it can avoid an imbalance between
the inspiratory and expiratory contributions to each breath [26]. Nonetheless, these
automated attempts still miss numerous artefacts.

5.2 Data Collection

5.2.1 Subjects and Protocol

We collated data from two different age groups (Paediatrics and Adults, Table5.1).
The paediatric dataset comprised a random sample of 9 subjects (total 69 FOT runs)
for training and 5 subjects (total 31 runs) for out-of-sample tests. These were taken
from a much larger ongoing epidemiological study, which has been described in
detail elsewhere (Ultrafine Particles from Traffic Emissions and Children‘s Health,
UPTECH) [13, 19]. The epidemiological study collected FOT data, as part of its
respiratory function assessment, in eight- to eleven-year-old children recruited from
25 different public primary schools in Queensland, Australia. FOT was performed
for at least 30 min after supervised medication administration and with at least 10
min rest prior to recording. Zrs was measured at 6 Hz, using an in-house built FOT
device (transducer Sursense DCAL-4, Honeywell Sensing and Control; more details
are available [32]) and modification to comply with recent recommendations [4].
Children were encouraged to breathe in a regular manner, avoid swallowing and
maintain a tightmouthpiece seal. Children hadmultiple recordings in a single session
as part of the study protocol.

For the adult group, 9 healthy participants and 10 asthmatic patientswere recruited
from staff and patients of the Royal North Shore Hospital, St Leonards, Aus-
tralia and the Woolcock Institute of Medical Research volunteer database (Glebe,
Australia) [34]. Healthy participants were non-smokers with no known respiratory
disease. Asthmatic adults had a physician diagnosis of asthma (clinically stable as
defined by GINA guidelines [3]) and had no reported diagnoses of any other cardiac
or pulmonary disease. The asthmatic and control subjects had three recordings over
seven days within a 10-day period at the Respiratory Investigation Unit at Royal
North Shore Hospital [34]. To ensure clinical stability, asthmatic patients continued
to take their usual medications and were reviewed by a specialist physician at each
visit for any changes in their usual symptoms. All recordings were performed at the
same schedule to avoid any diurnal variation effects. Zrs was measured at an oscilla-
tion frequency of 6Hz from a FOT device of similar general design and specifications
as the children dataset [21]. Three separate consecutive recordings were collected
with subjects breathing tidally for 60 s at each session (day). The participants put
their nose clip on and placed their hands on cheeks to reduce the upper airway shunt.
Recordings were assessed from visual inspection by a technician if tidal volume
and breathing frequency appeared stable. Artefact labels were made by the operator
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Table 5.1 Descriptions of FOT data sets used in this work

Dataset Subjects Recordings Breaths Description

Ds1 9 69 1110 Development, children (asthmatics,
Westmead Hospital)

Ds2 9 261 3067 Development, adults (healthy, Woolcock
Institute)

Ds3 5 31 580 Test, children (asthmatics, Westmead
Hospital)

Ds4 10 285 3947 Test, adults (asthmatics, Woolcock
Institute)

Table 5.2 Subject characteristics of development and test sets

Characteristics Children Adults

N (Subjects) 15 20

Measurements (Recordings) 70 546

Total breaths 1690 7014

Mean (±SD) age, years 10.4 (± 1.1) Healthy = 32.2 (±5.9);
Asthma = 37.5 (±11.6)

Other Weight (kg) = 33.56 (±6.73) Body massindex: Healthy =
23.2 (±1.5)

Height (cm) = 137.42 (±6.47) Asthma = 25.2 (±4.6)

using recommendations [26] (more details [34]). All subjects gave written, informed
consent and the study was approved by The Human Research Ethics Committee of
Northern Sydney Central Coast Health (protocol no. 0903-050M). For children, the
study was approved by the Queensland University of Technology Human Research
Ethics Committee (Table 5.2).

5.2.2 Data Pre-processing

Flow was measured using a screen type pneumotachograph (3100 series, flow range
0–160 L/min). Flow and pressure signals were digitally sampled at 396 Hz and band-
pass filtered with a bandwidth of ±2 Hz centred around 6 Hz. Breath cycles were
defined as described in the preliminary work [13, 22, 23, 34].

Rrs and Xrs were calculated at 0.1 s intervals using a standard frequency-domain
method. To ensure balance between the inspiratory and expiratory contributions to
each breath [26], incomplete or partial breaths at the beginning/end of the recording
were removed. Since the “not accepted” annotations included non-eligible physi-
ological breaths which are commonly known to be rejected by the standard FOT
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quality guidelines [17], we discard these artefacts in pre-processing steps and report
separately in later comparisons. First, we remove breaths that contain negative Rrs
which are non-physiological. Then, we discard breaths that have magnitude-squared
coherence values of pressure and flow less than 0.9 [26]. Unusually high amplitude
observations were successfully caught by the B-3SD approach [26] and discarded.
Finally, we apply 3IQR (i.e., 3IQR away from the median) to Rrs, Xrs, Volume,
Pressure, and Flow.

5.3 Performance Metrics

True Positives (TP) are breaths which were marked as “artefacts” by both a test
algorithm and the annotation. False Positives (FP) are breaths we labeled as
artefacts but did not agree with the ground truth. Breaths that we failed to label
as artefacts but were annotated as such, are defined as False Negatives (FN).
When the test method and the human agree that a breath was not an artefact, it
is counted as a True Negative (TN).

Sensitivity and specificity are TP
TP+FN and TN

TN+FP , respectively. F1-score,
which is the harmonic mean of precision and sensitivity, has best value at 1
and worst at 0 [25], is calculated as 2TP

(2TP+FP+FN )
. Throughput is the ratio of

breath numbers in the output to input, TN+FN
total input . Approval rate of the filtered

data (i.e., the breaths remaining after removal) is the ratio of breaths that are
“accepted” by the human to the total output breaths, TN

TN+FN .

Since Rrs is one of the main outcomes of FOT in clinical and research usage,
we consider variability (i.e., the standard deviation divided by mean) of the average
Rrs for each patient to be a critical metric. Specifically, within-session coefficients of
variation (wCV ) and/or between-session (bCV ) of measurements for average values
of Rrs recordings within one day of recording (i.e.,wCV ) or across days (i.e., bCV ).

To quantify this, we aim for an equivalent average Rrs, and lower or equal SD
compared with the human-based approach. However, if we only consider variability,
we may not account for the number of valid breaths that remain, e.g., we may discard
most valid breaths together with invalid ones to achieve low variability. Therefore,
when comparing techniques, we should strive for an equivalent preservation level
and lower variability.

The preservation after removal can be summarised by standard accuracy met-
rics (e.g., sensitivity, specificity, and F1-score [25]) and our new metrics: through-
put and approval rate. In confusion matrices for accuracy calculation, we consider
groundtruth to be the human labels (or “manual”), and positives to be artefacts.
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5.4 Proposed Artefact Detection Scheme

From a machine learning perspective, each breath is represented by a vector of fea-
tures. Features are then classified by a model (detector) constructed from domain-
knowledge and/or human annotations (labels). The aforementioned existing auto-
matedmethods are unsupervised techniques in which plain feature extraction is often
exploited and threshold values are chosen as a number of standard deviations away
from the mean of a single measurement. We hypothesize that advanced extraction
(e.g., two-dimensional, 2D) may provide more relevant features in order to allevi-
ate the above limitation of current existing automated methods. The relevance of
novel features can be confirmed non-heuristically by supervised techniques (feature
selection). Specifically, correlation of feature candidates with artefact characteristics
can be measured by mutual information (Shannon’s information theory [29]). The
clusterability of a candidate [1] indicates the efficiency of using threshold values to
detect artefacts. Two typical ways to assess the clusterability are the variance ratio of
clusters [1] and the separability calculated by Euclidean distances from an instance
to a near-hit and near-miss [15].

Given an exploratory feature pool, by selecting the k highest ranking candidates
(e.g., k = 10 often used in literature of feature selection), we can construct a more
accurate anomaly detector as non-salient features which cause overfitting are dis-
carded. Several challenging factors should be noted. One is the time-dependency of
lung function (e.g., lung elasticity [20]). The others are clinical aspects of FOT (e.g.,
Rrs and Xrs are dependent on body size and possibly racial/ethnic differences [30]).
Thus, to avoid dependency, feature ranking scores should be accumulated across
recordings. We also noticed that Rrs within a recording can be non-Gaussian, with a
strong kurtosis. Hence, when applying threshold values, we do not assume a partic-
ular distribution. Instead we use quartile percentages (called quartile thresholding).
In contrast to earlier works, the deviation threshold is also not assumed, rather it is
determined from the receiver operating characteristic (ROC) and other performance
metrics with training datasets. In this work, we evaluate FOTmeasurements at single
frequency and expect similar observations with other frequencies.

5.5 Feature Extraction

After data preprocessing, we construct a pool of exploratory features. According
to a ranking report of these candidates, we select the most salient subset of features
(Sect. 3.1) for further detection steps. The pool consists of 111 candidates (Table5.3),
of which 11 have been previously reported. Our new features include landmark
information and resampling values.
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Table 5.3 List of FOT data features examined in this work

Measurement Domain Function description New? ID

Pressure Frequency Maximum value of first
level DWT

No 1

Xrs Time Maximum, minimum, range No 2–4

Xrs Time 20-point resampled Yes 8–27

Volume Time Maximum, minimum, range No 5–7

Volume Time 20-point resampled Yes 28–47

Rrs Time Peaks, minimum, Cr, Cl, E No 54, 56, 61

Rrs Time 20-point resampled Yes 65–84

Flow Time Minimum No 62

Flow Time 2D Landmark Cr,Cl, E Yes 55, 57, 63–64

Flow Time 20-point resampled Yes 85–104

Rrs, Flow 2D Landmark Z, B, A Yes 48–53

Rrs, Flow 2D Landmark Z and D Yes 58–60

Rrs, Flow 2D Mean and std of polar
coordinators from 20-point
Rrs, Flow

Yes 105–108

Rrs, Flow 2D Frequency Maximum of full DWT
from 20-point Rrs, Flow

Yes 109, 110

Rrs, Flow Frequency Maximum spectral
coherence Rrs and Flow

Yes 111

5.5.1 Feature Pool

Landmark features are scalar values calculated from points of a breath cycle. Intu-
itively, we want to capture the boundary information of normal cycles to detect
anomalies. For example, in Fig. 5.1a, A,B,CL,CR,D,E,F,Z are seven landmark
points whose distances contain information for artefact detection (called 7-point
extraction). Specifically, points B and Z are at the zero flow value and the higher and
lower Rrs values, respectively. Points A and D are at the maximum and minimum of
Flow, respectively. Points CR, CL and E are at the maximum (right: positive Flow
area and left: negative Flow area) and minimum of Rrs, respectively.

Resampling features are extracted fromone dimensional inputwith a fixed number
of points for a cycle to alleviate varied durations of breaths. We noticed that the
minimum length of all breaths in the training data sets is larger than 30 points.
For generalization, we consider 20 points per cycle and assume this is sufficient to
describe the fundamental shape information for a breath curve. Thus, we re-sample
Rrs, Flow, Xrs, Volume at a fixed rate of 20 points/cycle (called 20-point) (Fig. 5.2).

Other new candidates in the pool are from different domains. For example, we
obtain the changes of polar coordinates over time for each breath (using the mapping
from Cartesian coordinates to their polar ones). We also explore the wavelet decom-
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Fig. 5.1 a:All accepted breaths (Rrs against Flow) by specialists fromone child (several recordings)
and 7 points proposed to determine boundary landmarks (dotted curves). b: Example features
extracted by landmarks for one breath from a child (dotted lines: Euclidean distances between
points)

Fig. 5.2 Example of unified 20-point resampling for a breath (Volume, time)

position analysis, DWT, (three level decomposition) with the Daubechies method [9]
of the above 20-point resampling vectors. For the spectral coherence computation,
we use 0.1667-second windows (as our frequency of interest is 6 Hz) and ensemble-
average every three windows with 50% overlap. This and the impedance are then
resampled at 10 Hz to effectively get the same number of coherence points as the
number of impedance values. The existing are minima and maxima of Rrs, and DWT
of pressure (e.g., [5, 6, 24, 26, 28]).

5.5.2 Challenging Factors and Other Criteria

Figures 5.3 and 5.4 illustrate the time dependence of samples within and between
recordings (and between different age groups). These variations and artefacts are
contained partly in the scaling information of the samples. This may introduce bias
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Fig. 5.3 Examples of challenges in learning contaminated Rrs (after preprocessing) within a par-
ticipant a and between participants b, c



5.5 Feature Extraction 57

Fig. 5.4 Examples of challenges in learning contaminated Rrs (after preprocessing) within and
between participants. a: Different breaths in one raw recording from a child. b Changes across
children in one data set (left) and adults (right)

into ranking scores of features which are extracted from amplitude values across
recordings. To reduce the bias, we accumulate scores for each feature candidate in a
recording-wise manner.

Apart from saliency ranking, we select a relevant and efficient feature set based
on performance metrics. We investigated ROC, F1-score, throughput, and approval
rate. For clinical interest, we have quantified the reduction in artefactual activity and
selected features by the variability of the average Rrs.
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5.6 Unsupervised Artefact Detector

5.6.1 Single Filter Approach

In thresholding filters, a breath is marked as an artefact and discarded if one of its
features exceeds a given upper bound or is less than a lower one. Since the normality
hypothesis of Rrs in a recording is rejected with a significance level of 0.05 (the p-
values were very close to zero; 0 to 1.27 × 10−17) by the Lilliefors test [16] and the
KS test [18], we do not assume a specific data distribution. Instead we use the ROC
plots to determine the threshold parameters. We refer to this detector as a quartile
thresholding filter.

Let Q1, Q3, and IQR denote the 25th, 75th percentiles and the interquartile range
of a variable, respectively. Let nIQR be a number of IQR intervals away from the Q1

and Q3. The lower bound θL is defined by nIQR interquartile intervals less than Q1.
The upper bound θH is nIQR intervals greater than Q3, i.e.:

θL = Q1 − nIQR × IQR (5.1)

θH = Q3 + nIQR × IQR (5.2)

To simplify parameter settings, we apply the same nIQR to all features and cate-
gorize subjects into two age groups (i.e., Paediatrics and Adults). We split each age
group into two data sets: one for training and the other for test. In this work, the set
of (training, test) for children is (Ds1,Ds3) and for adults is (Ds2,Ds4) (details of
data sets are in Table5.1).

We compare our detector with B-3SD [26] and the wavelet based with a complete-
breath rejection approach [5] (namely Wavelet-breath). These two methods were
recently proposed as the best automated ones in the literature. Note that, the work [5]
used a point rejection approach and asked the participant to intentionally introduce
artefacts while Wavelet-breath uses complete-breath rejection, and was tested with
our real-life artefacts. We performedWavelet-breath with three levels of DWT coef-
ficients (cd1,cd2,cd3) and the db5 method for pressure, and then used the three
recommended thresholds [5] (i.e., cd12 = 0.004; cd22 = 0.023; cd32 = 0.07).

5.6.2 Multi-filter Approach

Utilising previous experimental observations [5, 22], we examine an additional case
of employing the maximum of first level wavelet coefficients, cd1, decomposed
from pressure. According to observations in reference [5] which used a data set
with a predetermined plan to introduce artefacts, second and third level coefficients
(cd2, cd3) were proposed to detect swallowing and leaks at the mouthpiece. These
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Fig. 5.5 Combined respiratory artefact detection scheme. Rrs is resistance values of input breaths.
CXY is the spectral coherence between pressure and flow values of breaths. Cd12 is the squared
first level wavelet decomposition of pressure values. R,F,X , V and (ΘL : ΘH ) are resistance, flow,
reactance, volume values and their corresponding threshold ranges. Fea and (θL : θH ) are features
extracted (from the relationship between Rrs and Flow values) and their threshold ranges

artefacts often cause abnormal data points (i.e., out of usual range) in the Rrs-flow
curves [26], therefore the associated features are expected to be able to detect them.

For invisible artefacts (e.g., light coughs) which could be in the usual range of
normal breaths, the wavelet features of cd1 was found to be an alternative detection
technique [5]. Hence, we investigate the contribution of this feature type as a separate
layer of system for comparison purpose.

We used a three layer system for artefact removal. This comprises the pre-
processing step, the wavelet decomposition step, and the interquartile range filter
using landmark features IQR-Landmark (Fig. 5.5). We call this IQR with landmark
and wavelet (IQR-LW). Breaths that fail any threshold checking step are marked
as artefacts and discarded (complete-breath approach). The remaining breaths after
three filter layers are considered to be clean data (without artefacts).

The first layer (Pre-processing) is a non-physiologically plausible denoise filter
that removes breaths containing data points which are physiologically implausible
or corrupted by nonlinear noise using the FOT quality guidelines [17]. These include
breaths containing negative Rrs values [26] or having magnitude-squared coherence
values [7], equations as in Appendix A, CXY , of pressure and flow less than 0.9 [17].
CXY was calculated over 1/6-second windows, and ensemble-averaged every three
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windows with 50% overlap. This and the impedance were then resampled every
10 Hz to obtain the same number of coherence points as the number of impedance
values.

After preprocessing, as its benefits shown in the previous works (discussed detail
in the application background section) the squared first level of wavelet coefficient
derived from pressure data is compared with a preset threshold of 0.004 (cmH2O)2.
The second layer is expected to detect artefacts not identifiable by landmark features.
In preliminary investigations (results not shown), we determined that the optimum
performance was obtained using only cd1 (i.e., other coefficients can be ignored).
The final step involves the IQR-Landmark filter.

5.7 Supervised Learning Artefact Detector

5.7.1 Machine Learning and Challenges

Figure5.6 illustrates basic steps involved in a classification task, especially for super-
vised learning methods. The preprocessing module converts raw recorded pressure
and flow into volume, Rrs and Xrs and removes non-eligible data. The feature extrac-
tion module transforms these variables into features mostly using the knowledge-
based domain. Followingmodules are the newly proposed techniques to discriminate
artefacts from normal breath cycles.

Several challenging factors for the classification task are the time-dependency of
lung function (e.g., lung elasticity [20] as depicted in Fig. 5.3 and clinical aspects of
FOT (e.g., Rrs and Xrs are dependent on body size and possibly racial/ethnic differ-
ences [30]). In Fig. 5.4, one can easily notice the difference of recordings between
children and adults and even between different children.

These individual variations and physiological dependency may introduce bias
into modelling, particularly when training samples need to be recruited from sev-
eral different recording sessions. Because each FOT recording often lasts for one
minute, thus there is only about twenty breaths within a recording. Moreover, within

Fig. 5.6 Feature engineering scheme is a front-middle step of the applied machine learning process
in which feature learning is used to decorrelate samples before using conventional general-purpose
binary classifiers. Dark colour arrows for training stage; Light colour arrows for testing stage
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Fig. 5.7 Subjectivity of manual removal when regarding to as the ground truth (positives are
artefacts). The line with round markers (increased line width) are real artefacts in one recording for
a child that the operator mislabelled them as accepted during creating labels. The other two lines
are two examples of correct manual labels in the same recording

a recording, samples also suffer from correlation which results from physiologi-
cal time-dependence of the lung function [20]. These correlated training samples
make modelling difficult. In this work, we introduce an intermediate module, called
feature learning, that helps to decorrelate samples before using conventional general-
purpose binary classifiers.

Another critical issue for supervised learning lies in subjectivity of labels. Human
operators created labels based on recording-wise removal. Usually these labels that
are used for training in machine learning are assumed as ground truth. However, we
observed several cases that where the operator missed artefacts and marked them as
accepted due to recording-wise removals and/or subjectivity of human. For example,
Fig. 5.7 demonstrates wrong cases of False Positive evaluation results with regard
to manual removal as the ground truth (positivesves are artefacts). This example
is for one recording from a child when comparing results between the automated
detector by our previous work [22] and the operator. In the figure, the traces with an
increased line width were real artefacts in one recording for a child that the operator
realised later when evaluating test methods (e.g. our previous work [22]) that he/she
mislabelled them as accepted during labelling. Hence, conventional accuracies such
as sensitivities and specificities may not reflect the true performance of the proposed
method [22]. Thus, in this work, we report the evaluation using approval rate and
throughput that are less dependent on manual labels than conventional accuracies
but still depict the performance of the filtering function.
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5.7.2 Feature Extraction

Though there is a big exploratory pool of features constructed from the knowledge
domain (Sect. 5.5),we only investigate the selective setsmade by saliency scores [22].
Specifically, we extract three top ten salient feature sets according to three ranking
criteria: mutual information (MI) of feature candidates with artefacts measured by
Shannon’s information theory [29]; discrimination of features scored by Euclidean
distances (DIS) [15]; and the variance ratio of clusters [1] (Var-Ratio) to measure the
clusterability of features. Details of computing these scores can be found in Sect. 3.1.

As demonstrated in saliency ranking results [22], there are feature candidates
that consistently being selected regardless of participant age and across all above
three saliency criteria includes two dimensional extraction of Rrs and Flow, so-
called landmark. Briefly, landmarks are boundary points (e.g. the zero flow point,
the maxima and minima of flow and Rrs) of a breath cycle in a two dimensional
presentation of Rrs and Flow [22].

5.7.3 Feature Learning and Supervised Classifier

The supervised learning classification proceeds in three steps:

1. Step 1: Gathering a training set, Dtr , and a test set, Dte.
2. Step 2: Feature extraction and feature learning.
3. Step 3: Modelling and classification.

In Step 1, from four separate datasets (i.e., Ds1, Ds2, Ds3, and Ds4) we build

a study set D = {Ds1 ∪ Ds2 ∪ Ds3 ∪ Ds4} def= {Dtr,Dte} where 70% of samples in
D, called Dtr is used for training and 30% of samples in D, called Dte is used for
out-of-sample tests.

In Step 2, after extracting the numerical features (Sect. 5.5.1), we extract cate-
gorical ones. This process aims to alleviate the aforementioned challenging factors
(discussed in Sect. 5.5.2). We use Wilcoxon signed rank tests [36] to estimate the
closest distribution i.e., the closet value of mean between an unseen test breath and
a training group. Hence, the classifier that is used in the next step will operate in a
batch-wise manner [35].

Specifically, consider a training set ofNsamples,Dtr = {si}i=1:N .A sample s ∈ Dtr

has a numeric feature vector x ∈ Rd , and its class label y ∈ {0, 1}. We transform x
into an extended version that contains an additional vector a (namely a de-correlating
feature vector) to cluster Dtr into nearly i.i.d groups. The motivation of using this
component was discussed in detail at Sect. 5.5.2. Thus, learning inputs of a classifier
will be Feature = {x, a, y}Ni=1 where a is a function of x.

Let atrain and atest denote the a value of a sample in the training and test set, respec-
tively. Given the total number of training participants, P, the maximum number of
measurements per subject, M , and the maximum number of breaths per measure-
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ment, B, we identify s by using (p,m, b)where p ∈ {1, . . . ,P},m ∈ {1, . . . ,M }, and
b ∈ {1, . . . ,B}. atrain is defined by a function of p,m, b that consists of Kronecker
delta functions δ(n − α) where L = P + M + B and n ∈ {1, . . . ,L}.

a(p,m,b) = δ(n − p) + δ(n + P − m) + δ(n + P + M − b) (5.3)

Since the number of training samples in each FOT measurement is very limited
(about twenty samples per recording), the assumption of sufficient training samples
[12] could not be applied. We assign atest to the “most matched” atrain, i.e., a group
that the distribution of test sample is likely to belong to.

For time dependence, we gather breaths with the same ordinal number of a mea-
surement into one group. If a test sample has a larger ordinal number than any training
sample, it is given the largest ordinal number of the training. For difference of dis-
tributions, especially when P is small (i.e., only 20 in our case), the assignments use
Wilcoxon signed rank tests [36]. The examination finds a training group in which its
median is closest to the distribution of an unseen test sample. The null hypothesis
in Wilcoxon tests is rejected with a significant of 0.05. The most matched is corre-
sponding to the test case with the maximum p-value. To reduce an estimation error,
each group is tested repeatedly within a range of one interquartile range from the
training group (iteration steps of 1/200). We consider the p-value of Wilcoxon test
that larger than 0.9 indicates a match.

In Step 3,we explore three different classifiers to compare the improvementsmade
by our feature learning: 1-SVM, KNN, and Ensemble. These classifiers are general-
purposed classification algorithms with well-known implementations by MATLAB
(The MathWorks Inc., Natick, MA, 2000) and LibSVM [8]. Detailed descriptions
of these algorithms can be found [2, 14, 27]. In 1-SVM tests, we use the Schkopf
method [27] with the accepted breaths being the target class. We do a nested cross
validation for model selection in 1-SVM. The inner loop (10-fold) is considered a
part of the model fitting procedure. The outer (5-fold) estimates the performance
of this model fitting approach. A grid search for parameter ranges from 0.01 to 1
(steps of 0.05) using a radial basis kernel function. In KNN tests, we train a 5-nearest
neighbors classifier. In Ensemble tests, we construct a boosted classification using
the AdaBoost M1 method (with decision trees as the weak learners, 100 trees).

5.8 Results

5.8.1 Saliency Ranking

Ranking scores (i.e., DIS, MI, and Variance-Ratio) for each feature candidate are
presented in Fig. 5.8. Features with circle markers have been currently used in the
literature (Table5.3) while the others are our new candidates. Group “I” illustrates
results for children while “II” depicts adults. We sorted scores in the entire pool
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from high to low by each saliency criterion. Ranking order for the pool in Fig. 5.8a
is from 1 to 111 (high to low); the higher saliency score indicates the higher ranking
order. Figure5.8b shows the top ten features with their identifications (IDs, detailed
in Table5.3).

As can be seen in Fig. 5.8a, only three previous features (the minimum and peaks
of Rrs) are in the top ten highest ranking candidates from the children group. For
adult cases, these Rrs features have moderate variance ratio and very lowDIS scores.
Our novel landmark features dominate not only in both children and adult groups
but also across all three saliency criteria. Specifically, in Fig. 5.8b, they are landmark
features ID 48, 49, 50, 54 56, and 64 (description for these features is in Table5.3).

In next steps, given a detector of interest, we continue the selection by performance
criteria.

5.8.2 Unsupervised Artefact Detector: Single Filter Results

5.8.2.1 Parameter Settings

Using a quartile thresholding detector, against a wide range of deviation threshold
parameters, we compared the ROC, F1-scores, throughput, and approval rate curves
(Fig. 5.9) and the variability (Fig. 5.10) of three selection schemes with the case of
no selection. Apart from examining effects of introducing the selection schemes, we
use the above curves to determine the optimized nIQR settings.

We explored nIQR in a range 0 → 10 (incremental steps of 0.25). For nIQR > 4,
curves did not vary significantly. Hence, we depict these curves only for nIQR ≤ 4.
Four criteria (DIS, MI, Variance Ratio or No-sel (i.e., no selection)) are presented
with different markers. Figure5.9a and e presents their F1-scores. ROCs are shown
in Fig. 5.9b and f with solid lines for sensitivity, and dotted for specificity. The
throughput and clinical approval rate of the removal are illustrated in Fig. 5.9c and
g, d and h, respectively. The effects of nIQR and the feature selection on the variability
are demonstrated in Fig. 5.10.

We observed that characteristic curves were different between age groups. When
no feature selection algorithm is used, the optimized empirical nIQR is 3 for children
and 2 for adults. If a feature selection algorithm is involved, the optimized empirical
nIQR reduced to around 1.5 for children or 1 for adults. F1-score and throughput are
also improved significantly.

One important parameter setting is nIQR = 1. Across three feature selection algo-
rithms, this setting can work in a subject-independent manner with a high sensitivity
(around 80%) and specificity (about 70%) regardless of participant age (i.e., children
or adults). Although curves of the three saliency criteria were quite comparable, in
approval rate and variability, the MI selection is better. Hence, we proposed a final
model for the quartile thresholding detector that uses the MI selection technique
and settings of nIQR = 1, called 1IQR-MI. In the next section, we do out-of-sample
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(I) Children.

(II) Adults.

(a)

(b)

Fig. 5.8 Ranking scores for the feature pool (a) and the ten highest-score candidates (b). Vertical
axes: scores calculated by three saliency criteria. Horizontal axes in a: ranking order (highest = 1,
lowest= 111); b: feature identification (ID) in the pool. Circle markers: existing features (details in
Sect. 5.5.1). Note that peakR annotations in plots indicate a peak at either the left or right handside
of a Rrs-flow curve
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Fig. 5.9 Effects of nIQR and feature selection for paediatrics (top) and adult (bottom). Markers are
for different feature selection algorithms. a, e are for F1-scores. b, f are for ROC curves (Solid
lines: sensitivity; the dotted: specificity). c, g are for throughput curves. d, h are for approval rate
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Fig. 5.10 Effects of nIQR and feature selection on the variability of the average Rrs (standard
deviation over the mean across patients). Markers are for different selection algorithms. a is for
children and b is for adults

test with this model and compare with the aforementioned existing artefact removal
methods.

5.8.2.2 Out-of-Sample Tests

We used unseen test sets (Ds3 for children and Ds4 for adults) to validate the pro-
posed detector (1IQR-MI). Table5.4 compared 1IQR-MI with existing complete-
breath based methods: B-3SD [26] and Wavelet-breath [5]. Manual is the reference
value calculated from removals by a human expert. Paired t-tests (two-tailed) for
the variability (the test minus the operator, degrees of freedom of four (Ds3) or nine
(Ds4)) are also reported in Table5.4. In terms of sensitivity, approval rate by oper-
ator (i.e., of the output are breaths “accepted” by the clinician), and the variability,
1IQR-MI is the best detector. For example, in adults, although the mean Rrs of the
1IQR-MI had a comparable average value with the operator, the standard deviation
is lower (only 0.40 while the operator was 0.44 with p value is 0.06).
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Table 5.4 Results of out-of-sample test phase. 1IQR-MIa is the proposed. Others are the existing.
P valuesb are from paired t-tests (two-tailed, N = 5 (Ds3) or 10 (Ds4)). Positives are artefactsc.
Performance metrics are percentages. The proposed 1IQR-MI has the highest approval rate and the
closet variation of standard deviation of Rrs to the manual labelling

Paediatrics (test Ds3)

B-3SD [26] Wavelet-breath
[5]

1IQR-MIa Manual

F1-scorec [%] 46.8 21.6 41.2 –

Approvalc [%] 95.4 94.8 98.0 –

Throughputc [%] 82.7 30.0 67.1 84.1

Mean(±SD) Rrs
[cmH2OsL−1]

3.72 (±0.18) 3.74 (±0.20) 3.70 (±0.17) 3.75 (±0.16)

P-valueb Rrs 0.08 0.84 0.03 –

Mean(±SD)
SDRrs
[cmH2OsL−1]

0.29 (±0.13) 0.38 (±0.12) 0.32 (±0.11) 0.32 (±0.13)

P-valueb SDRrs 0.23 0.25 0.82 –

Adults (test Ds4)

F1-scorec [%] 50.6 49.3 54.7 –

Approvalc [%] 77.4 78.1 80.6 –

Throughputc [%] 85.4 55.9 63.4 68

Mean(±SD) Rrs
[cmH2OsL−1]

3.69 (±0.97) 3.69 (±0.98) 3.66 (±0.94) 3.67 (±0.95)

P-valueb Rrs
0.34 0.58 0.14 –

Mean(±SD)
SDRrs
[cmH2OsL−1]

0.40 (±0.23) 0.41 (±0.27) 0.40 (±0.24) 0.44 (±0.21)

P-valueb SDRrs 0.05 0.86 0.03 –
aThe detector used one interquartile range as a subject-independent parameter with the top ten
salient features selected by the MI technique
bcompared toManual, significant if P < 0.05
cRemovals by a specialist is considered ground truth. Throughput is the ratio of breath numbers in
the output to input. Approval rate of the breaths remained after removal is the ratio of breaths that
are “accepted” by the human to total output breaths. Details of equations as in Sect. 5.3

Rrs in our study ranged from 1.7 → 8 cmH2OL−1s in adults (Table5.4), i.e. a mild
to medium range of obstruction. To investigate the potential influence of obstruction
on our detector, Fig. 5.11a shows one performance metric, i.e. the approval rate,
plotted against the median resistance for each recording, while Fig. 5.11b shows the
distribution of the approval rate. It can be seen that while there is a large range, the
approval rate remainsmostly high regardless of themedianRrs. Similarly in children,
Fig. 5.11c and d show that, with the exception of three recordings, approval rates
remain high regardless of median Rrs, albeit within a smaller range of resistances.
We also quantified the independence of the approval rate and Rrs using the distance
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Fig. 5.11 Approval rate plotted against median Rrs and histogram of approval rates for all record-
ings for the adults (a, b) and children (c, d) testing datasets

correlation [31], and obtained 0.12 for adults and 0.27 for children, with complete
independence indicated by 0.

5.8.3 Unsupervised Artefact Detector: Multi-filter Results

5.8.3.1 Comparisons of Filters Against Ground Truth

In terms of comparison against themanual operator as ground truth, Fig. 5.13 presents
the receiver-operator characteristic of the proposed filter across a range of nIQR values
for both adult andpaediatric data.We found thatnIQR = 1.5gave the best performance
in adult data, whereas nIQR = 2.5 gave the best performance for paediatric data. An
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Fig. 5.12 Example of filtering a measurement from an adult by our proposed method. a: the
unfiltered data (i.e. contains artefacts). b: the accepted data or output of the system. c: the discarded
data by the system

example of filtering for a measurement is illustrated in Fig. 5.12 for an adult with
nIQR = 1.5 (Fig. 5.13).

With the best performing nIQR values, the combined method achieved 76% (adult)
and 79% (paediatric) agreement with the manual operator. The performance metrics
for the filters studied are shown in Table5.5. Note that since the manual operator
labelled acceptability in terms of breaths and not points, metrics are not available for
the wavelet-point method.

5.8.3.2 Comparisons Between Filters

Tables5.6 and 5.8 show the variability of filtered Rrs profiles across test methods
in comparison with the unfiltered data and filtering by a manual operator, for the
training and test datasets, respectively.

The percentage of breaths that were removed by the first layer from raw data sets
were only about 1% (paediatric) and 2% (adult) (Table5.6). The remaining breaths
thatwere kept by ourmethod is 69% (paediatric) and 73%(adult) of the total raw input
(the manual method kept about 77% in both cases). While theWavelet-point method
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Fig. 5.13 Receiver operating characteristic of the multi-filter approach with adjustable parameter
nIQR (range from 1.5 to 3) for paediatric group (square) and adult group (diamond)

Table 5.5 Comparisons of filters against the manual operator during training. IQR-Landmarka and
1IQR-MIb are our works related to our current proposed, IQR-Combinedc. textitWavelet-breathd is
the existing. Positives are artefacts. True positive breaths are breaths rejected by bothmachine-based
and manual removal. F1-scoree is the harmonic mean of precision and sensitivity. Sens: Sensitivity.
Spec: Specificity

Method Healthy adults Paediatrics

Accuracye F1e Sense Spece Accuracye F1e Sense Spece

IQR-
Landmarka

0.753 0.545 0.640 0.787 0.693 0.525 0.842 0.655

Wavelet-
breathd

0.584 0.335 0.453 0.623 0.431 0.341 0.730 0.356

1IQR-MIb

[22]
0.763 0.571 0.683 0.787 0.731 0.553 0.824 0.708

IQR-
Combinedc

0.781 0.569 0.626 0.828 0.827 0.632 0.734 0.851

aA single filter approach with landmark features and nIQR = 1.5 for adults and 2.5 for children
(where relevant)
bA single filter approach with features automatically selected by ranking [22] and nIQR = 1 for both
age groups
cAmulti-filter approach (comprising a wavelet and IQR-Landmark) with nIQR = 1.5 (adults) or 2.5
(children)
dA complete breath rejection approach using the wavelet coefficient thresholding detecion [5]
eRemovals by a specialist is considered ground truth
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Table 5.6 Comparison of filtered Rrs profiles between filters during training. IQR-Landmarka

and 1IQR-MIb are our works related to our current proposed, IQR-Combinedc. Wavelet-point and
Wavelet-breathared the existing. wCV and bCV are within and between session coefficients of
variation (Sect. 5.3) and presented in %. P valuese are from paired t-tests (two-tailed). %out is the
percentageof remainingbreaths (against the total raw input, unit in%) after beingfilteredbymethods
except for Wavelet-point which is in percentage of the raw data points. %discarded-by-preprocessing is
the percentage of artefacts that were removed in the preprocessing step (a common step for all test
filters)

Method Healthy adults Paediatrics

wCV P-value
wCVe

bCV P-value
bCVe

%out wCV P-value
wCVe

%out

Unfiltered
(raw data)

5.25 – 6.69 – 100.0 13.62 – 100.0

Manual (ref-
erence)

5.14 – 6.31 – 76.9 11.66 – 77.2

IQR-
Landmarka

4.56 0.08 5.76 0.18 80.6 12.69 0.57 74.5

Wavelet-point
[5]

5.43 0.34 6.84 0.46 97.1 13.96 0.30 98.9

Wavelet-
breathd

5.93 0.20 7.82 0.34 98 11.9 0.85 77.8

1IQR-MIb 4.69 0.20 5.91 0.05 67.8 12.25 0.80 60.0

IQR-
Combinedc

(proposed)

4.57 0.11 5.75 0.17 72.8 13.27 0.32 69.6

%discarded-by-preprocessing 1.9 2.6
aA single filter approach with landmark features and nIQR = 1.5 for adults and 2.5 for children
(where relevant). and 1IQR-MI
bA single filter approach with features automatically selected by ranking [22] and nIQR = 1 for both
age groups
cAmulti-filter approach (comprising a wavelet and IQR-Landmark) with nIQR = 1.5 (adults) or 2.5
(children)
dA complete breath rejection approach using the wavelet coefficient thresholding detecion [5]
eRemovals by a specialist is considered ground truth

kept 99% (paediatric) and 97% (adult) of total raw data points,Wavelet-breath only
kept 78% (paediatric) and 98% (adult) of raw breaths. Without the wavelet layer,
IQR-Landmark produced 74% (paediatric) and 81% (adult).

For a completely out-of-sample test set (adult patients with respiratory disease),
the above performance was maintained (Tables5.7 and 5.8). Our method kept 66%
of breaths compared with 69% of the human method. The accuracy of children test
set is 89.1%, higher than 82.7% of the training performance.
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Table 5.7 Comparisons of filters against the manual operator with out-of-sample data. IQR-
Landmarka and 1IQR-MIb are our works related to our current proposed, IQR-Combinedc.Wavelet-
breathd is the existing. Positives are artefacts. True positive breaths are breaths rejected by both
machine-based and manual removal. F1-scoree is the harmonic mean of precision and sensitivity.
Sens:Sensitivity. Spec: Specificity

Method Asthma adults Paediatrics

Accuracye F1e Sense Spece Accuracye F1e Sense Spece

IQR-
Landmarka

0.719 0.610 0.715 0.720 0.738 0.398 0.848 0.725

Wavelet-
breathd [5]

0.596 0.435 0.506 0.636 0.369 0.179 0.674 0.334

1IQR-MIb

[22]
0.736 0.606 0.661 0.769 0.747 0.412 0.870 0.733

IQR-
Combinedc

0.731 0.609 0.683 0.752 0.891 0.588 0.761 0.906

aA single filter approach with landmark features and nIQR = 1.5 for adults and 2.5 for children
(where relevant)
bA single filter approach with features automatically selected by ranking [22] and nIQR = 1 for both
age groups
A multi-filter approach (comprising a wavelet and IQR-Landmark) with nIQR = 1.5 (adults) or 2.5
(children)
cA complete breath rejection approach using the wavelet coefficient thresholding detecion [5]
dRemovals by a specialist is considered ground truth

5.8.4 Supervised Artefact Detector: Machine Learning
Classifier Results

We evaluated the performance gain of our new proposed modules, feature engineer-
ing with selection and learning, across classifiers (1-SVM, KNN, Ensemble) in the
classification task. For each classifier, we also implemented three feature selection
algorithms: DIS, MI, Var-Ratio and the case without using selection (i.e. using all
feature candidates, called No-Sel). Figure5.14 demonstrates examples for out-of-
sample tests with adult data.

As can be seen in Fig. 5.14, using our feature engineering module (referred to
as “with”) results in a higher Approval rate (i.e., positive difference) than the case
without the module (referred to as “without”). Note that in clinical applications, an
improvement of a few percentage in accuracy is very precious. Intuitively, compared
with the “without”, our automated machine learning based method using the pro-
posed feature engineering module reported more TNs and less FNs, i.e., closer to the
groundtruth.

We also notice that the proposed feature engineering module unfavorably has
lower F1-score than the “without” case under the DIS, Var-Ratio feature selection
criteria as well as No-Sel. However, if combining with the throughput metric, this
higher F1-score under “without” is likely linked to the larger throughput difference
between “without” and the manual method, especially the No-Sel case (about 42%).
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Table 5.8 Comparisons between filters during out-of-sample tests using the Rrs profile (reference:
manualwork (highlighted row),) IQR-Landmarka and1IQR-MIb are ourworks related to our current
proposed, IQR-Combinedc. Wavelet-point and Wavelet-breathd are the existing. wCV and bCV
are in %. P valuese are from paired t-tests (two-tailed). %out is the percentage of remaining breaths
(against the total raw input, unit in %) after being filtered by methods except for Wavelet-point
which is in percentage of the raw data points. %discarded-by-preprocessing is the percentage of artefacts
that were removed in the preprocessing step (a common step for all test filters)

Method Asthma adults Paediatrics

wCV P-value
wCVe

bCV P-value
bCVe

%out wCV P-value
wCVe

%out

Unfiltered
(raw data)

6.25 – 7.95 – 100.0 8.41 – 100.0

Manual (ref-
erence)

6.86 – 8.86 – 68.9 8.55 – 89.8

IQR-
Landmarka

6.52 0.13 8.22 0.05 80.6 8.30 0.66 74.5

Wavelet-point
[5]

6.64 0.57 8.15 0.09 98.7 9.06 0.21 79.1

Wavelet-
breathd

7.51 0.37 8.35 0.24 97.9 10.12 0.23 33.3

1IQR-MIb 7.93 0.26 6.68 0.05 63.7 8.62 0.86 67.1

IQR-
Combinedc

(proposed)

6.46 0.12 8.18 0.03 65.6 8.22 0.62 66.9

%discarded-by-preprocessing 2.5 0.9
aA single filter approach with landmark features and nIQR = 1.5 for adults and 2.5 for children
(where relevant)
bA single filter approach with features selected by ranking [22] and nIQR = 1 for both age groups
cAmulti-filter approach (comprising a wavelet and IQR-Landmark) with nIQR = 1.5 (adults) or 2.5
(children)
dA complete breath rejection approach using the wavelet coefficient thresholding detection [5]
ecompared toManual operator significant if P < 0.05

On the other hand, our proposed method not only yields a higher F1-score for the
MI feature selection criterion but also has the smallest throughput difference with
respect to the manual method.

Combining all three performancemetrics,wefind that among implemented feature
selection criteria (MI, DIS, Var-Ratio and No-Sel), the MI criterion yields the best
performance for all implemented classifiers (1-SVM, KNN, Ensemble). From the
experimentation, classifiers equipped with the feature learning and MI selection had
ahigher approval ratewith children data thanwith adults.Meanwhile, these classifiers
had a closer throughput to the manual output for adult than children.
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Fig. 5.14 Effects of feature
selection algorithms (DIS,
MI, and Var-Ratio) and
feature learning across
classifiers during
out-of-sample tests for
adults. Difference in % (with
standard errors) of Approval,
throughput, and F1-score are
comparisons between with
and without feature learning.
MI group produced gains in
F1-score and the lowest
difference in throughput
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5.9 Discussion

Our experiments were executed on recordings collected from adults and eight- to
eleven-year-old children in Queensland and New South Wales, Australia. For the
feature extraction, we suggest to obtain landmark features of the two dimensional
resistance-against-flow curves. This feature group is highly ranked by supervised
learning techniques using saliency scores (DIS, MI, variance ratio). Given a training
set, we calculated mutual information (Shannon’s information theory) and cluster-
ability scores to search for the best features. The MI score measures the correlation
(mutual information) between one feature candidate of a breath and its label of
abnormality. Meanwhie, DIS and variance ratio scores depict the clusterability of
a feature candidate. The selective features we introduced result from analysis of
saliency scores that has been motivated from a solid theoretical foundation and have
a unified framework.

Although selecting the ten highest score candidates is common practice in the
literature of feature learning, we acknowledge that an investigation for the stabil-
ity of these feature preferences should be undertaken. Nevertheless, our results are
consistent with more than one well-known feature selection algorithm with four sep-
arate data sets. As can be seen in Figs. 5.8, scores that lie out of the top ten were
significantly lower than the highest level. Thus, k = 10 satisfied our requirements.
In practice, one may choose the entire landmark group and the resulting detector will
perform comparably to the approach of this work. This is because the majority of the
top ten percentage are actually landmark features and the performance curves varied
negligibly among selection algorithms.

We noticed that the normality hypothesis of Rrs in a recording was rejected with
a significance level of 0.05 (the p-values were very close to zero; 0 to 1.27 × 10−17).
Hence, rather than assuming the normality of measurements and fixed threshold
values (e.g. 3SD away from the mean) as in earlier works, we advised to use quartile
percentages to detect anomalies, and measurement statistics to consider a breath an
artefact if one of its features exceeds a given upper bound or is less than a lower one.

In the past, quality control of forced oscillation data has often been done on the
basis of measures such as coherence, i.e. the degree of correlation between the oscil-
latory flow and pressure waves, where coherence values less than 0.95 were typically
excluded [17]. However, this has known limitations: coherence is highly dependent
on windowing and other signal processing settings for impedance calculation, and it
is often much reduced in disease, especially at lower frequencies.

Compared with either 3SD or 5SD filtering (i.e., existing statistical filters based
on number of standard deviations from the mean Rrs or Xrs value [6, 28]), we found
that breath-based filtering resulted in lower within- and between-session variability
in children. We also proposed removal of transient artefacts based on the distinct
deviations observed in the oscillatory flowand admittance signals, and in theRrs-flow
profile [26]. Specifically, mouthpiece leak artefacts manifest as a marked increase
in oscillatory flow and a pronounced spike in the magnitude of admittance. Other
artefacts often contain depressions or gaps in the oscillatory flow signal but are
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best identified by examining the Rrs-Flow profile (e.g. spikes in Rrs at or near zero
flow) [10, 24, 26]. However, these observations were made subjectively, with no
quantitative criteria or threshold to determine exclusion. The results of the present
study represent a first step towards more objective and automated criteria for quality
control of FOT measurements, based on a complete breath strategy. It employs an
intuitive approach to detecting anomalies from the Rrs-flow profile, for the first time
using landmark features to identify outliers.

A more recent approach to artefact detection was using wavelet decomposition
applied to the pressure profile of the breath [5], which was effective at excluding light
coughing, swallowing and vocalization artefacts. Although the wavelet method has
high performance in sensitivity and specificity (over 90%), its evaluation was limited
to simulated artefacts by trained subjects, and its performance on real world data was
unknown. In this study, using retrospective clinical FOT data, we found that partially
incorporating the wavelet approach into our proposed algorithm, particularly that
component which detects artefacts invisible to the operator from the FOT recording,
resulted in superior performance compared to either method alone.

We found that the method performed best when partly combined with the previ-
ously published wavelet detection method. We tested the different filtering methods
using real data collected from a variety of subjects: children, healthy and asthmatic
adults. A high degree of agreement between our method and the manual work was
observed and several breaths containing artefactsmissed by themanual operatorwere
detected by our method. Finally, within- and between-session variability was used
to assess the performance of each filtering method in the absence of ground truth.
The combined method reduced both variabilities compared with the operator, with a
slightly higher exclusion rate. Though using the IQR-Landmark scheme produced a
similar variation, a much lower exclusion rate than the operator implies that it may
have missed several artefacts that were recognized by the human (Table 5.9).

The importance of feature engineering in applied machine learning is also pre-
sented via respiratory artefact removal in lung function tests. Specifically, we showed
examples of challenges associatedwith individual variation and physiological depen-
dency of samples when applying conventional general-purpose binary classifiers.We
developed a feature learningmodule in order to overcome these challenging factors.
The feature learningmodule decorrelates breaths and increases the detection perfor-
mance of the classifiers. Our experiments were executed on four datasets collected
fromboth adults and children in different site locations (15 children + 9 healthy adults
+ 10 adults with asthmatic; producing 470 FOT recordings that contains 8704 breath
cycles). We use 70% of these datasets for training and 30% for out-of-sample tests.
In total, we trained general-purpose classifiers with 6926 breath cycles (samples)
consisting of 5518 normal breaths and 1408 artefacts. Among popular feature selec-
tion criteria in the literature (mutual information, Euclidean distance, and variance
ratio of clusters), our feature engineering steps significantly improve performance
of all implemented classifiers (1-SVM, KNN, Ensemble) with feature inputs selected
by mutual information criterion.
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Table 5.9 Test confusion matrix for out-of-sample tests with MI selection and feature learning.
Positives are artefactsa. 1-SVMb, KNNc and Ensembled were compared with Manual regarding
throughput

Classifiers Paediatrics Adults

Approvalc Throughputa Approvala Throughputc

1-SVMb 91.4 53.4 71.5 63.3

KNNc 91.4 53.4 71.6 62.8

Ensembled 91.9 53.1 71.3 63.5

Manuale – 85.3 – 62.8
aRemovals by a specialist is considered ground truth. Approval rate [%] is the ratio of breaths
that are “accepted” by the human to the total output breaths. Throughput [%] is the ratio of breath
numbers in the output to input
bis one class SVM using accuracy as the cost function and a nested validation with 10-fold inner
and 5-fold outer; A grid search for parameter ranges from 0.01 to 1 (steps of 0.05) using a radial
basis kernel function
c5-nearest neighbors classifier
dA boosted classification using the AdaBoost M1 method (with decision trees as the weak learners,
100 trees)

5.10 Summary

This chapter presents a collective anomaly detection application using feature engi-
neering proposed in Chap. 3. Experiments were executed on recordings collected
from adults and eight- to eleven-year-old children in Queensland and New South
Wales, Australia. Several novel feature extraction methods are suggested. Three
approaches of detection schemes were investigated: unsupervised filters with single
or multi-layers and supervised machine learning classifiers. We propose the work of
multi-layer unsupervised filters for its best performance and low computation cost. In
out-of-sample tests, this detector performed similar to the gold standard, as assessed
by paired t-tests (two-tailed) for variability.

Lack of standardization in quality control of FOT has been a barrier to its
widespread clinical adoption, despite decades of studies showing promising physio-
logical and clinical relevance. The ability to remove commonartefacts using objective
and automatable criteria is critical to overcoming this barrier, as these approaches
can be eventually incorporated into commercial software to guide the user and min-
imize inter-operator variability. These approaches are also especially desirable in
emerging applications of FOT such as in epidemiological field testing [13] and home
monitoring [10, 33].

There are few limitations in this work for the scenario.We only used data recorded
for a single frequency of FOT (6 Hz) closest to what is commonly reported in the
literature (5 Hz). However, our scheme could indeed be applied to multi-frequency
systems, either treating each component frequency independently (where detection
of an artefact at any frequencywould result in the exclusion of a breath), or by feeding
the most relevant features from all frequencies into the detector. The applicability of
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the detector at other frequencies remains to be tested, but we know that the Rrs-flow
profiles appear similar at 6, 11 and 19 Hz such that the landmark features would
likely be relevant.

When evaluating machine learning classifiers, only general-purpose well-known
classifiers are examined. We suggest that taking advantange of our feature engineer-
ing result, a specialized supervised learning algorithm should be developed as future
works to further improve the performance of artefact removal process.

In terms of applicability, the test datasets we examined exhibited amild tomedium
range of obstruction, ranging in Rrs from 1.7 to 8 cmH2OsL−1. Thus our method will
need to be tested for applicability across a wide range of obstruction, e.g., severely
obstructed patients or during an exacerbation.However,we note that our performance
metrics remainedmostly high (approval rate≥75%) regardless of medianRrs in both
the children and adult datasets. Therewas also a lowcorrelation between approval rate
and Rrs as reported previously [22]. Further work will also be needed to determine
how our method will perform in other diseases, e.g., chronic obstructive pulmonary
disease, where abnormalities in reactance (Xrs) will likely dominate those in Rrs. For
this, a new set of top ranking features may first need to be determined in a training
dataset.
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Chapter 6
Spike Sorting: Application to Motor Unit
Action Potential Discrimination

6.1 Background on Electromyography Motor Unit Analysis

6.1.1 MUAPs

Motor unit activity analysis provides crucial information towards diagnosis and treat-
ment of neuromuscular disorders. In intramuscular electromyography data, when
recording small voluntary contractions with a needle electrode, the electrical signal
obtained is often a sum of more than one motor unit (MU) from the surrounding
area of the needle tip. Therefore, a motor unit action potential (MUAP) consists of
several muscle fiber action potentials (MFAPs) within the anatomical MU.

Single MU activity is of research interest because changes of MUAP morphol-
ogy, MU activation, and MU recruitment yield valuable information. Neuropathic
conditions occur with decreased recruitment whereas myopathic conditions happen
with MUAP morphology changes. As an example, a MUAP examination can con-
firm myopathic conditions and identify the differential to find an appropriate biopsy
site [22]. On the other hand, most neurology laboratories utilize experts who spend
hours classifying action potentials (“spikes”) using commercial software tools (e.g.,
Spike2 [9], Cerebus [6]) after each recording. Hence, an unsupervised method is
highly desirable.

6.1.2 Spike Sorting

A practical spike discrimination procedure involves three basic phases: spike detec-
tion, feature extraction, and spike clustering. Spike detection often involves aligning
spikes to a common temporal point. The feature extraction phase provides principal
information that highlights differences among spikes. A dimensionality reduction
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step is executed to select only the few best coefficients. In the final phase, spikes are
assigned into different MU classes.

Spike classification processes include two main steps: extracting spike features,
and then classifying spikes using these spike features. Common spike feature extrac-
tion algorithms are based on principal component analysis (PCA) [14] used [1, 13],
the discrete wavelet transform (DWT) [19] applied [16, 25], independent compo-
nent analysis (ICA), [28] found [21, 27], or discrete derivatives [18]. Other existing
algorithms use waveform derivatives [29], the integral transform [30], inter-spike
intervals [8], or Laplacian eigenmaps [5].

6.2 Data Collection

6.2.1 Physiologically Based Synthetic Data

We used the nEMG simulation algorithm by Hamilton-Wright and Stashuk [15] for
development in this work. This was shown to produce nEMG data consistent with
those acquired from real muscle (the developed muscle). We run the simulator on
a Microsoft Windows personal computer for a concentric electrode during a 10%
maximal voluntary contraction (MVC). Figure6.1 illustrates a synthetic epoch of
100 ms.

6.2.2 Recorded Data

Wealso collected a real data set recording froma healthy youngmale at the Fuglevand
Laboratory [10] using a rack-mounted electro-physiological recording system CED

Fig. 6.1 Example of a 100-ms epoch of the simulated nEMG
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[9]. Data were sampled at 55.5 kHz. The experiment settings for force used to create
nEMG data was: time interval of 0.1ms for force, scale of 0.0023, unit of “N”. The
electrode type was the concentric needle electrode. A neurologist manually provided
labels of MUAP appearances together with its associated MU. Though most of the
manual labeling procedure was aided by a commercial software tool (Spike2 [9]),
the human operator is still needed for final template matching and adjusting. We call
this labels “reference” during our evaluation.

6.3 Feature Pool

We extracted twelve groups of features in both time and frequency domains
(Table6.1). Existing features include amplitude range information of EMG data,
DWT, top ten selected by KS tests [20] of DWT, top 10% selected by ICA or PCA.
New feature candidates are singular value decomposition (SVD) of spectral analysis
and spectrograms of raw amplitude data or DWT transformed data.

Several methods used for new feature extraction (i.e., have not been proposed
for nEMG spike sorting) are described as follows. Discrete wavelet analysis that
represents signals in both frequency and time is a very useful tool in the neuro-
science field [26]. Transient differences in high frequency features (sharp edges and
steep leading or trailing slopes) and/or in low frequency features (duration of the
repolarization phase) can present the morphology of spikes. In this work, MUAPs
are first decomposed into wavelet coefficients using the DWT method [19]. These
coefficients represent differences among spikes based on the quantification of energy
found in specific frequency bands at specific time locations (details in Appendix).

Table 6.1 List of candidates in the EMG feature pool. New*: Features have not been previously
proposed

Group ID Domain Description New?* Feature ID

1 Time Maximum amplitude of EMG No 1

2 Time Minimum amplitude of EMG No 2

3 Time Range amplitude of EMG No 3

4 Frequency DWT level d3 No 4–128

5 Frequency DWT level d4 No 129–253

6 Frequency DWT level a3 No 254–378

7 Frequency SVD of spectral analysis Yes 379–386

8 Time ICA (10%) No 387–398

9 Time PCA (10%) No 399–410

10 Frequency KS test of DWT (top ten coefficients) No 411–420

11 Frequency Spectrograms of raw amplitude Yes 421–1065

12 Frequency Spectrograms of DWT Yes 1066–1710
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We implemented a 4-level decomposition andHaar window using built-in functions
of MATLAB (The MathWorks Inc., Natick, MA, 2000).

Due to the multi-modal distribution of coefficients [25], we rank these
candidates by scores calculated by deviation from normality, using a modifica-
tion of Kolmogorov–Smirnov (KS) test [20]. Let X be a data set, the score is
max(|F(x)G(x)|)where F(x) is the cumulative distribution function of X andG(x)
is a Gaussian cumulative distribution function with the same mean and variance. To
minimize the effect of overlapping spikes, for each coefficient, only values within
three standard deviations (both directions) are considered [25]. To better compare
with existing most relevant methods, the ten largest score candidates are selected as
previously suggested to separate spikes.

These selected coefficients are transformed to a series of spectral snapshots (spec-
trograms) using the short Fourier transform (STFT [12]). Specifically, let v ∈ R

1×10

be the wavelet feature of a spike. A Hamming window is used with STFT to trans-
form v into an image of spectrogram I (e.g., 5 × 129). Hence, distance between
spikes used in the next sorting process are the correlation coefficients between these
images.

6.4 Automated Spike Sorter

6.4.1 Preprocessing

Intramuscular data is corrupted by spike-like correlated noise. Thus, we need to
make data points statistically independent (“pre-whitening”). A practical approach
employs a linear prediction filter [17] to whiten the input signal itself before we
extract any MUAP. In this work, we use a third-order forward linear predictor (FIR
filter) that predicts the current value of the real-valued original data based on past
three samples [17]. Using timing labels from the reference, we extract the spike set
together with labels of MU classes. All spikes are extracted with the same window
size of 8 ms.

To focus on sorting evaluation, overlapping spikes (i.e., have more than two MU
in the same window) relate more to spike detection than sorting algorithms. Thus,
we removed overlapping spikes with small delay by detecting multiple peaks within
a spike window. For overlaps without delay (i.e., they may look like the firing of a
new neuron) we consider these spikes a separate class.

Because the firing behaviour of an individual MU relates to its recruitment thresh-
old [2, 7], the size of a valid cluster corresponding to a MU should exceed a param-
eter. According to the recruitment threshold assignment derived from the work of
Fuglevand [11] and popular settings found in the literature, we set this parameter to
40. All clusters with size smaller than 40 were merged into a group, called catch-all
class. In the previous works of sorting performance evaluation, this class is some-
times set apart. We assume that these small clusters may associate with overlapping
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spikes without delay. Thus, we evaluate two cases of detection performance: include
catch-all and exclude catch-all. To assign the label for cluster (or individual spike if
that is the catch-all cluster), we measure the correlation between the mean waveform
of the cluster and the one of the reference group. A label is chosen if the match has
the highest correlation score.

6.4.2 x-Class Sorter

After feature extraction steps, based on MUAPmorphology, the correlation between
spikes is used as the similarity measure for an number x-class sorting application
[23, 24] where x is unknown. Rather than using the Euclidean distance metric, to
account for electrode drift and subject-independent setting requirements, the corre-
lation metric that ranges −1 → 1 is used.

Let IX and IY be two feature vectors of MUAP X and MUAP Y , respectively.
rX,Y is the correlation between two feature vectors of X and Y (Eq. (3.7)). The
class assignment variable of X is defined by the correlation based sorting scheme
(Sect. 3.2.3). The sorter starts with a single class contains all spikes having high
correlation rX,Y with the initial spike given a desired threshold level (e.g., 0.9). Then
the sorter stops when the unsorted pool of remaining spikes is empty.

6.5 Reference Works

The objective reference clustering results are available for the synthetic data as the
simulator is controlled during data generation. However, this is usually not available
for the recorded data. Ideally the reference could be derived from simultaneous intra-
cellular recording, but availability of such data is limited. The most common practice
in physiology laboratories involves using commercial software (specifically Spike2
in our work) and manual checking by a human operator. This was the approach used
to obtain the reference for our real recorded data.

We also compare our proposed method with a relevant work using the DWT
extraction and super paramagnetic clustering (SPC) [3]. We applied the default set-
tings for the SPC method as recommended by Blatt et al. [4]. Specifically there were
q = 20 states, K = 11 nearest neighbours, and N = 500 iterations for clustering.
The range of temperature was from 0 to 0.201 in steps of 0.01. The implementation
was provided by the authors [3] (MATLAB packages, The MathWorks Inc., Natick,
MA, 2000).
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6.6 Performance Metrics

Performance metrics for a multi-class classification task are derived from the confu-
sion matrix. Let M be the confusion matrix of sorting outcome (Eq. (2.3) in Chap.2).
The successful predicted events (True) for a class are on the diagonal of M . All other
members of M are incorrectly predicted events (False).

Let Mi, j denote the number of test outcomes (i.e., ground truth labels, Gi ) of
class i , that were predicted as class j , Pi . The number of successful predicted events
(True) for class i , denoted Tii , is the diagonal of M . All other members of M are
incorrectly predicted events (False), denoted Fi j where i �= j .

M =

P1 . . . Pi . . . PC⎛
⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎠

T11 . . . F1i . . . F1C G1
...

. . .
... . . .

...
...

Fi1 . . . Tii . . . FiC Gi
... . . .

...
. . .

...
...

FC1 . . . FCi . . . TCC GC

(6.1)

The sensitivity and positive predictive value (PPV) of class i , Seni and PPVi , are
defined as follows.

Seni = Tii
Tii + ∑

j �=i Fi j
(6.2)

PPVi = Tii
Tii + ∑

j �=i Fji
(6.3)

6.7 Results

6.7.1 Selected Features

Figure6.2 illustrates the ranking scores by saliency criteria for each feature candidate
over the entire exploratory pool (sorted from high to low scores); a higher saliency
score indicated the higher ranking order. The top highest-score candidates were
investigated using histograms by feature Group ID (Table6.1) as in Fig. 6.3.

As can be seen, scores dropped quickly outside of the top 25% candidates by
DIS criterion and only after 80% candidates by the MI score. We noticed that, by
MI criterion, except for the single feature of Group 1, all other members of the top
25% belong to Group 12. Meanwhile, by DIS criterion, though the top 25% includes
several groups, Group 12 still dominates the high score area. Hence, we proposed to
use the feature set Group 12 for the next evaluation in terms of sorting performance.
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Fig. 6.2 Feature ranking results by DIS criterion. a Ranking scores for the entire feature pool.
Vertical axes: scores calculated by saliency criteria; Horizontal axes: ranking order (highest =
1, lowest = 1710). b The histogram of the top 25% highest-score candidates by feature groups
(Table6.1)

Fig. 6.3 Feature ranking results by MI criterion. a Ranking scores for the entire feature pool.
Vertical axes: scores calculated by saliency criteria; Horizontal axes: ranking order (highest =
1, lowest = 1710). b The histogram of the top 25% highest-score candidates by feature groups
(Table6.1)

6.7.2 Sorting Performance

6.7.2.1 Synthetic Data

After preprocessing, spike sets were prepared for the sorting stage as in Table6.2.
Note that, though a confusion matrix may give much more information on misclas-
sification, in the context of this thesis, in all applications we presented there is no
known ground truth, the best practice has been subjective manual labels. Thus, we
used visualization tools to compare our observations. Figure6.4 depicts five refer-
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ence classes (Fig. 6.4a) and two clustering results using the SPC sorter (Fig. 6.4b) and
our proposed sorter (Fig. 6.4c). TheMU1 class has much larger amplitude range than
other four classes in the reference set. Classes MU2-5 have only slight difference
in the waveforms. In the SPC clustering result, a class may include more than one
cluster (e.g., classMU2 andMU4 in Fig. 6.4b). Also, theMU5 class may be included
in clusters of other classes. Our sorter produced five clusters that match with five
reference classes though it does have a catch-all group similar to the SPC method.

The proportion of the catch-all group is reported in Fig. 6.5a. After assigning
labels, the histograms were compared with the reference histogram (Fig. 6.5b). In
terms of the confusion matrix, the general classification accuracy and class-wise
sensitivities as well as predictivities are reported in Table6.3.

6.7.2.2 Recorded Data

Table6.4 depicts the distribution of spikes in large clusters corresponding to the ref-
erence classes from the recorded dataset. Both automatic clustering methods had

Table 6.2 Class proportions of spike set inputs are in order of the MU names in the labels

Synthetic data Recorded data

No. data points (sampling rate) 937500 (31kHz) 7500000 (55kHz)

Number of spikes 1230 1220

Number of classes 5 3

Class proportion 336:269:226:207:192 440:483:535

Table 6.3 Synthetic data MUAP sorting comparisons between automatic methods and the refer-
ence. Accuracy measures (in %) use simulation settings as reference. True/False are MU matching
or not with the reference labels

Metrics Class Include catch-all Exclude catch-all

SPC-based Our method SPC-based Our method

Sensitivity MU1 39.3 92.5 100.0 100.0

MU2 85.1 67.6 100.0 98.4

MU3 74.7 75.2 98.8 98.3

MU4 71.9 69.5 99.3 88.9

MU5 19.3 88.0 0 72.9

PPV MU1 100.0 100.0 100.0 100.0

MU2 81.2 98.9 98.2 98.9

MU3 54.5 80.2 54.5 80.2

MU4 98.6 97.9 54.6 97.9

MU5 10.4 44.9 0 100.0

Average accuracy 58.2 79.3 81.9 94.8
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Fig. 6.4 Clustering results using synthetic data. a There are five classes from the reference labels
(MU1 to MU5). b SPC sorter (compared method) may include more than one cluster for the same
class. c Our proposed method using correlation based clustering. Axes x , y are time index and
amplitude of the spikes (µV), respectively. Different colours are different clusters made by sorters,
not colour coded for the class
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Fig. 6.5 Agreement in histograms of automatic methods against the reference for synthetic data.
a: excluded catch-all b: included catch-all

Table 6.4 Distribution of
spike count in large clusters
corresponding to the
reference classes from the
recorded dataset

Our
method

The
SPC-based

The
reference

MU1 MUAPs 314 368 383

MU2 MUAPs 283 335 408

MU3 MUAPs 378 284 429

Remaining MUAPs 245 233 0

about 19% catch-all spikes. There were three reference classes. While the ampli-
tude range of spikes in MU1 and MU2 are ±0.5µV, MU3 ranges are much larger
(±1µV). Sorting performance for each MU and the general accuracy were depicted
in Table6.5.

In contrast with our superior results against the SPC when applied to the syn-
thetic data, results of both automatic techniques were comparable with recorded
data. However, the size of dataset as well as a small number of active MUs recorded
may explain for this. We may also need an inter-rater measurement to alleviate the
subjectivity of the reference in evaluation. These should be addressed in future work
for the method. In general, all performance measurements we achieved in this study
are among the most accurate outcomes in spike sorting evaluation works (Fig. 6.5).



6.8 Summary 93

Fig. 6.6 Agreement in histograms of automatic methods against the reference for recorded data. a
Exclude catch-all b Include catch-all

Table 6.5 Comparison of sorting performance using recorded data between automatic methods.
Accuracy measures (in %) use manual labels as reference. True/False are MUmatching or not with
the reference labels

Metrics Class Include catch-all Not include catch-all

The
SPC-based

Our method The
SPC-based

Our method

Sensitivity MU1 99.7 99.7 99.7 99.6

MU2 89.9 68.6 100.0 99.6

MU3 74.6 83.9 100.0 100.0

PPV MU1 71.8 65.8 100.0 99.6

MU2 99.7 99.6 99.7 99.6

MU3 100.0 100.0 100.0 100.0

General accuracy 87.6 83.7 99.9 99.8

6.8 Summary

In this chapter, a classification application where the number of classes is not known
is reported. A similar feature ranking can still be used to better extract features. The
extention of using anomaly scores in the classifier was also illustrated. Synthetic and
real recorded datasets of motor unit action potentials were used to evaluate the per-
formance. Comparing with the manual reference, our MUAP classification method
is comparable (regarding to the number of MUs found and histograms of MUs).
Moreover, in the SPC method, the default settings assumed a maximum number of
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clusters. If the real recording conditions provoke more classes than that parameter, a
technical specialistmay need to redefine the parameter. Furthermore, the temperature
terminology used in the SPC for reviewing outcome is less intiuitive than the corre-
lation as in our method. The correlation values range −1 → 1 while the measure of
temperature is difficult to tune.
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Chapter 7
Conclusion

This chapter summarises the proposed feature engineering method for classification
applications (Chap.3) and the main observations in several experiments presented
in Chaps. 4, 5 and 6. Discussions also include limitations and future works for each
scenario. In general, the contribution of a systematic application of feature engineer-
ing to accuracy performance is shown in all three cases of real-life biomedical data
classification.

7.1 Proposed Algorithms

This thesis proposed classification schemes for unsupervised and subject-independent
settings in biomedical data processing applications, especially for automated deploy-
ments in out-of-the-lab environments. This not only helps eliminate the subjectivity
associated with human involvement, but it also reduces labour costs.

Existing automated efforts have been predominantly designed for subject depen-
dence and only yielded modestly accurate results for subject-independent settings.
In this thesis, three examples (human body movement assessment (Chap. 4), respi-
ratory artefact removal (Chap. 5), and spike sorting for electrophysiological data
(Chap. 6) demonstrated that the classification performance of unsupervised and
subject-independent automated sorters for biomedical data can be improved by
exploiting data-driven and domain-knowledge-driven strategies that help find bet-
ter features and more efficient sorters.
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7.1.1 Feature Engineering

This thesis improved datamining in subject-independent settings by using supervised
techniques to find better features (i.e., more discriminative and higher correlated with
the desired output). A voting-based technique has been proposed to analyze ranking
scores by several saliency criteria including mutual information, Euclidean distance
based discrimination, and variance ratio based clusterability. This hybrid selection
scheme is a data-driven approach and can compare a comprehensive set of candidates
including existing features and novel variants. Given a large set of exploratory feature
candidates, the most selective features learnt from this process are most applicable
to the unsupervised and subject-independent applications.

The feature selection technique based on voting has been first reported for respira-
tory artefact removal in FOT measurements [2–4], FoG detection [5–7], and nEMG
spike sorting [1]. The voting selection considers not only mutual information crite-
rion but also clusterability. Novel efficient features were discovered thanks to the fact
that they are more relevant and discriminative than existing ones commonly used in
the FoG, FOT, and nEMG literature [1, 3, 5].

7.1.2 Classifiers

In each application, better models have been suggested through this domain-
knowledge-driven approach (e.g., issues associated with dependency in Chap.5
and/or other related domain knowledge in Chaps. 4 and 6). Specifically, in Chaps. 4
and 5, the proposed feature learning resulted in anomaly detectors which, to the
best of our knowledge, achieve the best reported performance for unsupervised
subject-independent settings for FOT data regardless of participants’ age [4] and FoG
data [6, 7]. In Chap.6, an efficient unsupervised spike sorter is introduced when the
class number is not known for subject-independent settings [1].

7.2 Experiment Results

7.2.1 Point Anomaly Detection Application

As freezing of gait instance of patients with Parkinson’s disease can be detected as
point anomalies, relevant and discriminative features can make simple thresholding
filters work as detectors.

According to the feature ranking in Chap.4, apart from the existing features (e.g.,
the freezing index extracted from ankle sensor at vertical axis), the new feature with
multiple channels, FIMC , is one of the top features in saliency, clusterability, and
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robustness. Only seven out of 244 exploratory candidates met requirements of our
three-round selection procedure.

Theproposed anomaly score baseddetector,ASD, is a simple thresholdingmethod
but using dynamic threshold values that make ASD suitable for subject-independent
requirements. In Chap.4, the ASDmethod significantly outperformed existingworks
with a small window and/or low tolerance. For example, for ASD ankle (y-axis),
the mean (±SD) of sensitivity, specificity are 94% (±23%) and 84% (±36%) while
the recent work [8] only achieved 75% and 76%, respectively.

These findings form a further step towards subject-independent out-of-lab FoG
detectors. In future work, a combination of top ranking features should be further
evaluated. A more elaborate technique for the ASD threshold settings is also worthy
of further study.

7.2.2 Collective Anomaly Detection Application

In Chap.5, another anomaly detection scenario is demonstrated using data from
lung function tests. Breath cycles that include any respiratory artefact data points are
required to be removed (to appropriately assess the lung function). A complete-breath
removal approach is applied to ensure the balance of a cycle. Hence, the removal can
be done by a collective anomaly detection technique. This thesis utilized data sets of
forced oscillation technique (FOT) recorded fromadults and eight- to eleven-year-old
children in Queensland and New South Wales, Australia.

Based on observations from the proposed feature ranking steps, a new set of
landmark features were proposed. These were extracted from boundary points of
two-dimensional resistance-against-flow curves. This feature group is highly ranked
by supervised learning techniques using saliency scores (DIS, MI, variance ratio).
The MI score measures the correlation (mutual information) between one feature
candidate of a breath and its label of abnormality. Meanwhile, DIS and variance
ratio scores depict the clusterability of a feature candidate.

Although selecting the ten highest score candidates is common practice in the
feature learning literature, an investigation of the stability of these feature preferences
should be undertaken. Nevertheless, our results are consistent with more than one
well-known feature selection algorithm with four separate data sets. As reported in
Sect. 5.8.1, scores that come after the top ten were significantly lower than the top
ten group. Thus, k = 10 satisfied our requirements. In practice, one may choose
the entire landmark group and the resulting detector will perform comparably to
the approach of this thesis. This is because the majority of the top ten are actually
landmark features and the performance curves varied negligibly among selection
algorithms.

While we demonstrated a reasonable degree of independence between the accu-
racy of our detector and levels of obstruction (details in Sect. 5.8.2.2), further work
is required to determine if the detector can be applicable to recordings from severely
obstructed patients or those experiencing an exacerbation. Also of note is that in our
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datasets of healthy and asthmatic subjects, Rrs features ranked consistently high,
whereas the features associated with Xrs did not rank highly for inclusion in the
detector. This may be different in other diseases, and remains to be tested.

Finally, the analysis was limited to a single frequency closest to what is usually
reported in the literature (5 Hz). However, the detector could also be applied to multi-
frequency systems which are commonly used, using a similar set of features for each
component frequency.

In terms of detection performance, we used several metrics (e.g., ROC, through-
put, and variability (Sect. 5.3)) to determine threshold parameters. During develop-
ment, the performance curves (i.e., F1-scores, ROC, and the variability) against the
parameter nI QR showed that the top ten features outperformed the case of no feature
selection. The three saliency scores yield nearly similar performance curves. The pro-
posed artefact detector, 1IQR-MI achieved promising results in subject-independent
settings, regardless of age. In out-of-sample tests, our detector performed similar to
the gold standard, as assessed through paired t-tests (two-tailed) for variability.

Our findings are an important first step towards objective and automated quality
control of FOT measurements, as FOT moves beyond its long-standing role in the
respiratory research realm, becomes more available in commercial systems and is
increasingly adopted in clinical and home telemonitoring settings.

7.2.3 Spike Sorting Application

In Chap.6, we applied the proposed feature ranking scheme to a different classifi-
cation scenario where the number of classes is unknown. Spike sorting is a typical
example for this case where the main task is to discriminate motor unit action poten-
tials using nEMG data. Both types of data sources were used: synthetic and real
recorded nEMG recordings from human subjects.

From the feature rankingobservation, a novel candidate set has been suggested as it
was higher correlated to themotor unit reference andwasmore separable than existing
features. Then the Chapter introduced a correlation based clustering technique.
Compared with the reference produced by human experts, the proposed method
obtained a comparable result. The number of classes was found to be equivalent.
MUAP morphology was identical in each pair of corresponding MU class, and the
histograms of MUs by the proposed method were also similar to the reference ones.

7.3 Summary

Technical background and details of proposed algorithms for feature relevance selec-
tion as well as classifiers were discussed in Chaps. 2 and 3. Then biomedical back-
ground and their literature review for the three application scenarios were provided
in the remaining chapters of this thesis. Chapter 4 illustrated point anomaly detection
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in human body movement assessment using accelerometer data for FoG in patients
with advanced Parkinson’s disease. Chapter5 reported a collective anomaly detection
case study using lung function test data. Chapter6 presents outcomes of multi-class
classification in spike sorting for motor unit action potential in nEMG data.

Summary of Findings

1. Current objective methods for FoG detection used various global parameters
and/or different channels. This suggests a high variability in actual thresholds
over time and subjects.

2. The averages of FOTmeasurements, which are themain outcomes in clinical and
research applications, are affected significantly by the artefacts. Apart from the
natural dependency of breath samples, the normality assumption of data within
a recording is invalid by current hypothesis tests. Hence, beside choosing better
features, more general statistical parameters with quartiles should be applied
rather than existing methods with the normality assumption.

3. Though single MU activities provide the most informative part in diagnosis and
treatment of neuromuscular disorders, nEMG data often provide more than one
MU activities. ThusMUAP discrimination is a crucial task. Note that the number
of classes in this classification task is unknown. Hence a well-suited metric to
sort is the correlation between MUAP waveforms.

4. The de facto standard or ground-truth practice for these three cases has been
the manual sorting that is laborious and subjective. Unsupervised methods using
simple statistical thresholds have only yieldedmodest performances. Supervised
learning models have been mainly reported with excellent results for subject-
based rather than subject-independent settings.

5. New features found by the feature engineering could help deploy a low compu-
tational cost classifier and thus make it more generalized with respect to subject
variations.

The three real-life applications demonstrated in this thesis illustrate that systematic
feature engineering could help replace standardmanual classificationwith automated
classifiers that are unsupervised, subject-independent, and of low computational cost.
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Appendix A
Wavelet Decomposition and Spectral
Coherence

A.1 Wavelet Decomposition

Wavelet decomposition coefficients (DWT) [1] and spectral coherence [2] was
calculated as below. Let s(t) be a curve which can be presented by coefficients
C (a, b) (A.1).

C (a, b) = 1√
a

+∞∫

−∞
s(t)ψa,b(t)dt (A.1)

whereψa,b (t) = ψ
(
t−b
a

)
is an expanded or contracted and shifted version of a unique

wavelet function ψ(t) a and b are the scale and the time localization, respectively.

A.2 Spectral Coherence

Let CXY be the spectral coherence between signals X and Y . CXY is defined by the
Welch method [2] as in Eq. (A.2).

CXY (ω) = PXY (ω)√
PXX (ω).PYY (ω)

(A.2)

where ω is frequency, PXX (ω) is the power spectrum of signal x , PYY (ω) is the
power spectrum of signal y, and PXY (ω) is the cross-power spectrum for signals x
and y. When PXX (ω) = 0 or PYY (ω) = 0, then also PXY (ω) = 0 and we assume
that CXY (ω) is zero. To estimate power and cross spectra, let Fx (ω) and Fx(ω),
denote the Fourier transform and its conjugate of signal x , respectively, i.e. Fx (ω) =
+∞∫
−∞

x(t).e− jωt dt . The power spectrum is then: PXX (ω) = Fx(ω).Fx (ω); PYY (ω) =
Fy(ω).Fy(ω); and PXY (ω) = Fx (ω).Fy(ω).
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A.3 STFT

: is the mathematical technique to produce spectrograms. Let x[n] be an input vector
to be transformed. x[n] is broken up into frames (size m). Frames should overlap
each other to avoid artefacts at the boundary. This transform can be expressed as

X (m, ω) =
∞∑

n=−∞
x[n]h[n − m]e− jωn (A.3)

spectrogram{x(n)}(m, ω) ≡ |X (m, ω)|2, (A.4)

where x[n] is an input of the transform, h[n] is a window function with size m.



Appendix B
Table of Settings for Synthetic nEMG Data
in Chapter6

See Table B.1.

Table B.1 Settings for synthetic nEMG data

Number of motor units in muscle 200

Neuropathic MU loss fraction 0

Max adoption distance In um 150

Neuropathic MU enlargement fraction 1.5

Myopathic fibre affected fraction 0

Myopathic new involvement percentage in
each cycle

5

Myopathic fibre gradually dying? 0

Dying and splitting depending on affection
procedure?

1

Myopathic threshold of fibre death 25

Percentage of affected fibers dying 0

Myopathic fraction of fibres becoming
hypertrophic

0.05

Factor of original area at which hypertrophic
fibres split

2

Percentage of hypertrophic fibers splitting 0

Myopathic rate of atrophy 0.96

Myopathic rate of hypertrophy 1.04

Tip uptake distance 4500

Cannula uptake distance 4500

Radius of cannula shaft 250

Cannula length (in mm) 10

Needle X position (in mm) 0

(continued)
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106 Appendix B: Table of Settings for Synthetic nEMG Data in Chapter 6

Table B.1 (continued)

Tip/Cannula reference setup Tip versus Cannula

Needle Y position (in mm) 0

Needle Z position from NMJ in mm 15

Enable jitter? True

Jitter (variance) in us 25

MFP threshold for jitter OR MU GST inclusion
threshold (kV/s2)

10

Minimum metric to seek needle to 0.25

Generate noise? true

S/N ratio? 25

Recorded muscle name Biceps brachii

Laterality Right

Maximum recruitment threshold 50

Total time for EMG generation 29

Max (scaled) value in 16-bit output 4096

Internal interp. factor for jitter 30

Muscle fibre density 10

Area of 1 muscle fibre 0.0025

Min motor unit diameter 2

Max motor unit diameter 8

Ipi firing slope 0.8

Min firing rate 8

Max firing rate 42

Coeff of variance 0.25
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